
Gardens Point Component Pascal — Release
Notes

John Gough

April 10, 2019

This document applies to GPCP version v1.4.08 for .NET
(Microsoft Common Language Runtime)

1 Introduction
Gardens Point Component Pascal (gpcp) is an implementation of the Component Pas-
cal Language, as defined in the Component Pascal Report1 from Oberon Microsys-
tems. It is intended that this be a faithful implementation of the Report, except for
those changes that are explicitly detailed here. Any other differences in detail should
be reported as potential bugs.

The distribution consists of four programs, and a number of libraries. The pro-
grams are the compiler gpcp, the make utility CPMake, a module interface browser
tool Browse, and a tool for extracting public symbol metadata from assemblies written
in other .NET languages PeToCps.

The compiler produces either .NET Common Intermediate Language (CIL) or Java
byte-codes as output. The compiler can be bootstrapped on either platform. These
release notes refer to the Microsoft.NET platform. Current versions of the compiler
require V4.5 or later of the .NET runtime.

Modules compiled with .NET version V2.0 up to V3.5 appear to interwork seam-
lessly. However earlier executables cannot work with V4.0 binaries. A separate build
of gpcp is required for version V4.0.

There are a number of syntactic extensions to the Component Pascal language ac-
cepted by the compiler that have been introduced to allow interworking with the native
libraries of the underlying platform. The guiding philosophy in such cases is to not sig-
nificantly extend the semantics of the constructs that form part of Component Pascal,
but rather to provide syntax for accessing features of other languages, which have no
direct counterpart in Component Pascal.

1The defining document is simply referred to throughout this document as the Report.

1

2 OVERALL STRUCTURE 2

2 Overall Structure

2.1 Input and Output files
In normal usage the compiler creates between two and four output files for every source
file. If the file “Hello.cp” contains the module Hello, and is compiled, then the output
files will be “Hello.cps”, “Hello.il”, and either “Hello.dll” or “Hello.exe”.
The “*.cps” file is the symbol file which contains the metadata that describes the
facilities exported from the module. The “*.il” file contains the Common Interme-
diate Language (CIL) representation of the program. The program executable will be
“*.exe” if the program contains an entry point (i.e. if the module imports CPmain),
otherwise the compilation will create a dynamic link library “*.dll”. By default, all
of these files are created in the current directory. However command line options al-
low alternate destination for all the output files. If a listing file is created it will have
filename extension “.lst”.

Be aware that the stem name of all the output files comes from the module name,
and not from the source-file name. Thus if the source file “Hello.cp” contains module
Foo then all of the output files will have stem name “Foo”.

It is possible to invoke the compiler so as to produce just the intermediate language
file, and to then manually invoke the intermediate language assembler “ilasm”. The
assembler may then be used to produce any of its possible output formats.

2.2 Invoking the compiler
The compiler is invoked from the command line using the command syntax —

$> gpcp [options] files

The options are given in Figure 1.
UNIX-style options “–” may also be used. In the JVM versions the “–”form is the

expected default. Any number of files may be added in a white-space separated list.

2.3 Target choice
The compiler may choose its output language at runtime. The default output when
running on the .NET platform is .NET assembler (CIL). The recognized options are —

/target=net this is the default CIL format
/target=jvm this causes Java byte codes to be emitted

The Java output option produces JVM class files directly.

Output files

Running the compiler with the /nosym flag causes the input files to be parsed and
type-checked, but no output files are created except possibly a listing file.

If the compiler is run with the /noasm flag, the input files are parsed and type-
checked, and a symbol file is produced for each input file. No assembly language or
program executable file output is produced however.

If the compiler is run with the /nocode flag, the input files are parsed and type-
checked, and a symbol file and one CIL assembly language file is produced for each
input file. No executable files are produced in this case.

If the compiler is run without any flags, the input files are parsed and type-checked,
and a symbol file, and a program executable (PE) file (either .DLL or .EXE) is produced

2 OVERALL STRUCTURE 3

General Options
/copyright display the copyright notice
/dostats emit timing and other statistics
/help emit this usage prompt
/list create an output listing if there are errors (default)
/list+ always create an output listing
/list- never create an output listing
/quiet make gpcp run silently whenever possible
/verbose chatter on about progress during compilation
/version emit version information
/warn- suppress warning messages from the console
/nowarn same as -warn-
Environment Options
/cpsym=XXX use environment variable XXX instead of CPSYM
/hsize=N set hashtable size, with N (0 .. 65000)
/special used for creating symbol files for foreign interfaces
/strict disallow non-standard language constructs
Output Options
/bindir=X place PE (and pdb) files in directory “X”
/debug emit debugging symbols (default)
/noasm don’t create asm (or object) files
/nocheck don’t perform arithmetic overflow checks
/nocode create il output, but do not assemble
/nosym produce no output files, not even a symbol file
/symdir:X place symbol files in directory “X”
Code Generation Options
/ilasm use ilasm even with /nodebug
/target=X emit assembler output for platform “X”
/unsafe allow import of SYSTEM functions
/vserror errors are in Visual Studio format
/xmlerror errors are in XML format

Figure 1: gpcp options

for each input file. If the default /debug flag is in effect then a textual CIL file
(extension .il) is produced and the PE-file is created by the ilasm tool. The default
behaviour in the presence of the /nodebug option was to directly produce a PE-file
using the PERWAPI component. This option is no longer available. The next release
will introduce a new file writer.

Output files with “/target=jvm” option

If the compiler is run with the /target=jvm flag, the input files are parsed and type-
checked, and a symbol file and one or more class files will be produced. These class
files are written directly, using the legacy class file writer from gpcp v1.3.

If, in addition, the /nocode flag is used, then Jasmin assembly language (*.j)
files will be produced, but Jasmin will not be invoked.

If, instead of /nocode the /jasmin flag is added, Jasmin assembly language

2 OVERALL STRUCTURE 4

files are produced for each input file. The Jasmin assembler is no longer available
so no class files are created. Thus the jasmin option is only useful for those who are
curious to have a human-readable form for the JVM output.

2.4 Overflow checking
Ordinarily the compiler produces code that performs arithmetic overflow checks on
all operations. Narrowing assignments (such as assigning a long value to an integer
variable) are also range checked. Compiling with the /nocheck option removes these
checks. There is a very small speed gain if checks are turned off. Checks may also be
turned off on a per-procedure basis, as described in Section 4.15.

2.5 Listing output
The compiler, by default, produces a listing file only if there are compile-time errors or
warnings. It is possible to force the compiler to produce a listing, using the “/list+”
option. Equally, it is possible to prevent the creation of a listing file even if there are
errors, by using the “/list-” option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the format shown in Figure 2

1 MODULE BarMod;
2 IMPORT FooMod;
3 TYPE
4 Bar* = POINTER TO ABSTRACT RECORD (FooMod.Foo)

**** ----ˆ Only ABSTRACT basetypes can have abstract extensions
5 i,j,k : INTEGER
6 END;
7 END BarMod.

Figure 2: Example error message

2.6 Statistics output
If the compiler is invoked with option /dostats then compile time statistics are
produced. Figure 3 is an example, compiling the program Browse. The meaning of
the values written to the console is as follows.

* The compiler imports symbol files in dependency order, if necessary. The maxi-
mum recursion depth for this example turned out to be 0.

* The size of the hash-table, and the number of entries used is shown

* Import time is the time to read and process metainformation for all imports. In
this example module Browse imports much of the compiler data structures.

* Source time is the time to read the source file into the internal buffer.

* Parse time is the time to parse the buffer, create the syntax tree and resolve all
identifiers.

2 OVERALL STRUCTURE 5

E:\gpcp-CLR\work> gpcp /dostats Browse.cp
#gpcp: created Browse.exe
#gpcp: <Browse> No errors
#gpcp: net version 1.3.16 of 1 January 2013
#gpcp: 2613 source lines
#gpcp: import recursion depth 0
#gpcp: 981 entries in hashtable of size 8209
#gpcp: import time 26mSec
#gpcp: source time 34mSec
#gpcp: parse time 67mSec
#gpcp: analysis time 20mSec
#gpcp: symWrite time 4mSec
#gpcp: asmWrite time 92mSec
#gpcp: assemble time 65mSec
#gpcp: total time 308mSec

Figure 3: Compile statistics example

* Analysis time is the time to do type checking, and dataflow analysis.

* SymWrite time is the time to write out metatdata to the symbol file.

* AsmWrite time is the time to write out the assembly language (CIL) output.

* Assemble time is the time taken to spawn a new process and run ilasm. As-
semble time is always zero if the direct to PE-file output path is selected by
/nodebug.

2.7 Setting the hash table size
The compiler uses closed hashing internally, with a default number of identifiers of
8209 in the current version. It is possible to increase the number of entries by means of
the /hsize=NUMBER option. Numbers up to 66000 are meaningful to the program.

If the hash table overflows, the compiler gives an error message, with a hint to in-
crease the size. There is a example program with the distribution that creates a program
that will break the compiler, so that users may test this feature. The compilation fails
with “/hsize=4000”, but succeeds with the default table size.

2.8 Choosing the Output and Symbol Directories
By default all output files are created in the current directory. This behavior may be
overridden with the options /bindir and /symdir. The output symbol files are
placed in the directory specified by the option /symdir=target-directory. Note care-
fully that if a target directory is chosen that is not on the CPSYM path then gpcp will
not be able to find the symbol files automatically.

Program executable directories, and debug files in the case that debugging symbols
are being created may be placed in a specified directory using the /bindir=target-
directory option.

2 OVERALL STRUCTURE 6

If the JVM target has been chosen then the /symdir option still applies, but
/bindir option does not. Instead, the root of the output class file hierarchy may
be specified using a syntactically similar /clsdir option.

By default the compiler searches for the symbol files of imported modules along the
CPSYM path. This environment variable is set during installation, and should always
begin with the current directory “.”. Under some circumstances it is necessary to over-
ride the default path. For example, when compiling against the compact framework
foreign system modules such as “mscorlib” must be placed in a different directory,
since the module names clash with those of the desktop framework. If the environment
variable CPCMPCT is set to the correct path for the compact framework, then the com-
mand line switch /cpsym=CPCMPCT will override the default. Typical settings might
be —

> set CPSYM=.;C:\gpcp\libs;C:\gpcp\libs\NetSystem
> set CPCMPCT=.;C:\gpcp\libs;C:\gpcp\libs\CompactSyms

All of the non-foreign libraries supplied with gpcp will work with either framework, so
the “libs” directory would typically live on both paths.

2.9 What Libraries are in NetSystem?
For the v1.4.08 release the following system libraries are included in the NetSystem
folder: mscorlib.dll, System.dll, System.Configuration.dll, System.Data.dll, System-
.Drawing.dll, System.Net.dll, System.Security.dll, System.Windows.Forms.dll, System-
.XML.dll. The total number of modules is 145.

2.10 The Make Utility
The compilation process with Component Pascal guarantees type safety across sepa-
rately compiled module boundaries. Since interface meta-information resides in the
symbol files which gpcp creates, modules must be compiled in an order that respects
the partial order induced by the global importation graph. For complex programs, this
may be difficult to determine manually.

The utility CPMake reads symbol files, and if necessary source files, in order to
determine a valid order of compilation. The syntax for invocation is —

$> CPMake [options] moduleName

The module name may be given with or without a file-extension, and is usually the
name of a module which imports module CPMain or WinMain, that is, the name is
usually that of a base module. However, since version 1.3.8 the program accepts any
module as the starting module and issues a warning if that is not a base module. The
module name given to CPMake is case sensitive.

In general, when source files of a program have been modified only a subset of
the modules have to be recompiled. CPMake is able to work out which modules must
be recompiled by checking the date stamps on the files, and also checking the module
hash-keys (“magic numbers”) in the symbol files. If a module has been edited, but
the public interface of the module has not changed a recompilation should compute
a new magic number that is the same as that expected by any previously compiled,
dependent modules. In this case CPMake detects that the dependent modules are still
consistent and do not require recompilation. This “domino-stopping” feature of the
program ensures that a conservative minimum of modules are recompiled.

2 OVERALL STRUCTURE 7

CPMake works out the order in which to perform a compilation by constructing
a directed imports graph of the program rooted at the given starting module. The
graph will contain nodes corresponding to all the modules that are imported either
directly or indirectly by the starting module. A valid order of compilation is found by
performing a topological sort on the directed graph. The set of modules considered for
re-compilation includes all the modules on which the starting module depends. If there
are any modules that depend on the starting module then these will not be recompiled,
and the program will probably fail at runtime. This is why it is normal to start with a
base module. Starting CPMake with a non-base module therefore should be only done
after careful consideration.

The options accepted by the program are exactly the options accepted by gpcp,
except for an additional option -all. This option forces compilation of all modules
in the local directory that are in the transitive closure of the “imports” relation with the
base module, irrespective of date stamps and magic numbers. magic numbers.

Hint:
If you use CPMake to bootstrap the compiler, be aware that out-
put file-creation will fail if the output would overwrite any file of
a loaded assembly. This means that you cannot bootstrap gpcp
using an instance of the compiler from the same directory, unless
you use the “/nocode” option and then invoke ilasm manu-
ally, or use the “/bindir=directory” option.

2.11 Module Interface Browser
The program Browse reads the symbol file of a module and displays the public inter-

MODULE ClassMaker;
IMPORT

RTS,
GPCPcopyright,
Console,
IdDesc;

TYPE
Assembler* = POINTER TO ABSTRACT RECORD

END;

ClassEmitter* = POINTER TO ABSTRACT RECORD
mod* : IdDesc.BlkId;

END;

PROCEDURE (self:Assembler) Assemble*(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Init*(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Emit*(),NEW,ABSTRACT;
END ClassMaker.

Figure 4: Browse output from gpcp source file ClassMaker.cp

2 OVERALL STRUCTURE 8

face. This public interface is shown in a form similar to a Component Pascal module.
This “module” shows all the types, variables and procedures that are exported from the
specified module. Only the exported fields of record types are shown. Any exported
procedures are shown as procedure headers only. The output from Browse is not a
proper Component Pascal module and will not compile using gpcp. It simply shows
all of the identifiers that may be imported and used by a client module. Figure 4 is the
html output from the command “Browse -html ClassMaker”.

This program is invoked with the command —
$> Browse [options] moduleName(s)

The symbol file extension “.cps” may optionally be included in moduleName. As with
gpcp, any number of files may be added in a white-space separated list. The Browse
program sends its output to the console by default, and has the following options:

/all // browse this and all imported modules
/dst:dir // place output files in directory dir
/full // display full foreign names
/file // write output to ModuleName.bro
/hex // format integer literals in hexadecimal
/html // write html output to ModuleName.html
/sort // sort procedures and types in alphabetical order
/verbose // chatter on about progress while processing
/verbatim // display internal names of “anonymous” types

The /all option produces output for all of the modules on the global imports graph of
the specified module. The /full option is only meaningful for FOREIGN modules
where the output from Browse will include the full external names for all procedures.
The default for Browse is to only display the internal (Component Pascal) names. See
Section 7 for more on Foreign Language Interfaces. The /file option sends the
output to the file <moduleName>.bro instead of to the console. The /html option
produces hyperlinked html text in the file <moduleName>.html. In the html output
defining occurrences of identifiers are red and are anchored, while module names and
external types are blue and hyperlinked.2

Browse and Foreign Libraries

Since version 1.4.07 gpcp has some extra decoration for html browser files for foreign
libraries. In particular, these make plain the semantic differences that apply to certain
imported types.

Figure 5 shows the heading of the browse file from the .NET foreign library Sys-
tems.Collections. Things to note about this screenshot fragment are the header com-
ment, which notes the PeToCps or j2cps version that produced the symbol file, and the
library containing the executable content.

Next, note the comment line immediately under the type-header. This comment
states that the implementation of the type is (1) a reference class rather than a struct;
(2) has a “no-arg” constructor, and hence can be allocated using the standard Compo-
nent Pascal NEW syntax; (3) has a constructor with arguments, and hence can be called
using the alternative “init(...)” syntax; (4) this pointer type cannot be dereferenced in
entire assignments as would be expected for (non-extensible) Component Pascal record
types.

2 The most useful call of the program, in practice, is Browse /html /sort /hex symFile

2 OVERALL STRUCTURE 9

Figure 5: Browse page header

In order to make this clearer, each component of this comment can be clicked on
to create a popup window spelling out the semantics of each attribute. Figure 6 shows

Figure 6: Browse page with Popup

one of the popups for the DictionaryEntry type from the same module. In this case
the type is a valueclass and can be used in an entire assigment and passed by value.
Foreign libraries written in Java have no equivalent semantics, although Component
Pascal record-types implemented on the JVM do allow value-assignment.

Popups are discarded by clicking on them.

2.12 MakeIndex Utility
Version 1.4.05 includes a utility MakeIndex that creates an index for all of the files in
HtmlBrowseFiles directory.

2 OVERALL STRUCTURE 10

Usage from the command line is —
MakeIndex [/verb[ose]] /dst:directory

The program creates an index for all the html browse files in the given directory. The
index file is placed in the same directory, and has name index.html. All of the browse
files are accessible from this index.

2.13 Symbol File Generator PeToCps
This program is a symbol file generator that first appeared with version 1.3 of gpcp.3

The symbol files produced by the program provide access to all the static features of
the basic types, such as System.Char. The syntax of the symbol files produced by
PeToCps is extended so as to allow program access to .NET functionality not present
in Component Pascal. In particular, see section 7.3.

PeToCps generates symbols files corresponding to .NET assemblies. Taken to-
gether with the Browse tool, this makes the libraries of the .NET framework accessible
to Component Pascal users. The gpcp distribution includes symbol files for the most
commonly used .NET libraries, and their corresponding browser files.

To generate symbol files for one or more program executable libraries the usage
is —

$> PeToCps [options] assemblyName ...

where current options are:
/big allocate a very large symbol table
/copyright display the gpcp copyright message
/help display this usage message
/verbose chatter on about progress

Each specified assembly will produce one or more symbol “*.cps” files. For example,
the command —

$> PeToCps /big System.Windows.Forms.dll

creates seven symbol files. This program executable module (PEM) requires the large
symbol-table option.

The creation of symbol files from the mscorlib system library requires separate
handling in version 1.4.06 and higher.4

$> PeToCps [options] /mscorlib

where the options are:
/copyright display the gpcp copyright message
/help display this usage message
/verbose chatter on about progress

For mscorlib V4.0 the command —
$> PeToCps /mscorlib

creates 55 symbol files.

3 Release 1.4.06 has a new version of PeToCps which uses the System.Reflection library to read program
executable files.

4 System.Reflection cannot load the mscorlib assembly, since every .NET program has this library already
loaded before it begins. The previous version simply read and decoded the binary dll file, the new version
must reflect on its already loaded mscorlib assembly.

2 OVERALL STRUCTURE 11

2.14 Canonicalization of Names in PeToCps
PeToCps determines the names of its output symbol files from the name of the program
executable module (PEM), and the namespaces that it contains. The program attempts
to compress the names to avoid repetition of the same name stem in the assembly name
and the namespace. If in doubt, running PeToCps with the verbose switch writes the
output file names to the standard output stream.

The current version of PeToCps uses a canonicalization of assembly file names that
avoids problems when the name contains characters that would be illegal in Component
Pascal identifier names. This was a particular problem for users of Mono, as that
system uses hyphen characters freely in assembly names. The new canonicalization of
assembly names changes ALL non-alphanumeric characters to the lowline “_”.

From version 1.3.6 it is possible to avoid using the canonicalized names for for-
eign module imports, by using an extension to the import list syntax as described in
section 4.7.

2.15 Handling of Primitive Types by PeToCps
The common type system of .NET defines an abstract class associated with each prim-
itive type. For example the abstract type System.Char, defined in the mscorlib library,
is associated with the primitive Unicode character type. This abstract type provides a
convenient hook on which to hang static methods of the primitive type, and also allows
that the primitive type can override methods of System.Object.

PeToCps provides access to the static methods of these abstract types, but cannot
provide access to the instance methods. Figure 7 is an example program accessing a
static method of the System.Char class.

1 MODULE CharProps;
2 IMPORT ... ,
3 Sys := mscorlib_System,
4 Glb := mscorlib_System_Globalization;
5 VAR chr : CHAR;
6 int : INTEGER;
7 BEGIN
8 chr := !"\u00A5"; (* The Yen symbol *)
9 int := Sys.Char.GetUnicodeCategory(chr);

10 ... (* int is 26, CurrencySymbol *)
7 END CharProps.

Figure 7: Accessing static methods

The program imports mscorlib System so that the static methods of System.Char
are visible to the compiler. mscorlib System Globalization must also be imported so
that the compiler knows that UnicodeCategory is an enumeration and thus values of the
type are assign-compatible with the integer type. Finally, note the use of the BangString
format3.2 to enter the Unicode character literal.

The instance methods of the System.Char class are not visible in the symbol file.
An attempt to call, say, chr.GetHashCode() will provoke an error “chr is not

of RECORD type”.

3 LEXICAL ISSUES 12

3 Lexical Issues

3.1 Latin-8 Character Set
Versions of gpcp up to V1.3.4 worked correctly with input files that contained only
ASCII characters. The current version allows any characters from ISO 8859-1, the latin-
1 extension of ASCII. Eight-bit characters may now be used in identifiers as described
in the Report.

3.2 Unicode Literal Strings
Component Pascal has a literal string format which does not allow any form of char-
acter escapes. gpcp (from version 1.3.12) allows literal strings to contain any 16-bit
Unicode character, including embedded NUL characters. Strings which require this
extended behaviour are declared using the exclamation point prefix —

BangString ::- “!” “"”{ANY except "} “"”.

Escape sequences are used to insert characters in the string format. The allowed escape
sequences are —

* Any of the single character escapes: \0, \a, \b, \f, \n, \r, \", \\, with the
usual ANSI C interpretation.

* Two-digit hexadecimal escapes in the form \xhh denoting the same character
as “0hhX” in Component Pascal.

* Any 16-bit Unicode character may be denoted \uhhhh.

where h is any (case insensitive) hexadecimal digit. In this release only Unicode char-
acters from plane-0 are recognized.

3.3 Non-standard Keywords
In order to provide facilities for the foreign language interface there are a total of six
new keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIV0 an additional arithmetic operator (C integer division)
REM0 an additional arithmetic operator (C integer remainder)
EVENT used to declare multicast delegate type for .NET events
RESCUE used to mark a procedure-level exception catch block
ENUM used in dummy foreign modules in the .NET system
INTERFACE used in dummy foreign modules for defining interfaces
STATIC used to declare static features in dummy foreign modules

Only DIV0, REM0, EVENT and RESCUE may be used in normal programs, the
remainder are used in dummy foreign definition modules.

The following new predefined identifiers have been added. These can be redefined,
but not at the outer lexical level. Definitions for these built-in identifiers are given
below.

3 LEXICAL ISSUES 13

UBYTE an unsigned 8-bit integer type
MKSTR function to convert a CP “string” to the native string type
BOX make a dynamically allocated copy of record or array
TYPEOF fetch the runtime type descriptor, for reflection
USHORT convert a value to unsigned byte, with range-check
REGISTER attaches a procedure to a (.NET) multicast delegate
DEREGISTER detaches a procedure from a multicast delegate
THROW procedure that (re)throws a native exception object
APPEND appends a new element to an extensible array (vector)
CUT shortens an extensible array to the given length
LSH performs a logical (not arithmetic) shift
ROT performs a rotation of its argument

There are some other predefined identifiers used in the extended syntax, but these
are “context sensitive markers” and do not prevent the same names being used for
program identifiers.

Warning
Remember, if you use any of these non-standard keywords or
built-in identifiers, your program source will not be portable to
other implementations of Component Pascal.

3.4 Common Language Specification names
Fully qualified names in the Common Language Specification (CLS) comprise four
parts.

* Assembly name – the assembly in which the class will be found

* Namespace name – this specifies the namespace of the class

* Class name – the class name

* Feature name – the field or method name.

An example might be –
[mscorlib]System.Exception::ToString

where mscorlib is the assembly name, System is the namespace, Exception is the class
name, and ToString is a method name.

In this version of gpcp, the compiler produces one assembly per module, and one
namespace per module. Both the assembly and the namespace names are the same as
the module name. Thus a type-bound procedure called isString() bound to the type
UnaryX in module ExprDesc would have the CLS name —

[ExprDesc]ExprDesc.UnaryX::isString

Procedures and variables at the module level are declared in the CLS as belonging
to a synthetic “class” that contains only static data and code. This implicit static class
has the same name as the module. Thus the module-level variable “xId” in module
Foo will have the somewhat boring CLS name —

[Foo]Foo.Foo::xId

4 SEMANTIC ISSUES 14

Users of the compiler should almost never have to deal with explicit CLS names.
If you do browse the assembler output of the compiler, you will notice that almost

all names are escaped with single quotes like ’this’. This is done to avoid clashes
with the many names that are reserved in the assembler.

All aspects of the default naming scheme may be overridden, if required. Such a
necessity might arise if the Component Pascal code must interface with a framework
that has particular naming patterns hardwired in. The details of the mechanisms for
overriding are given in Appendix 14.

3.5 Identifier syntax
The identifier syntax for Component Pascal allows arbitrary use of the underscore (low-
line character). There is a further extension that is specific to the foreign language
interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash
with CP reserved words. In this case, we may escape the reserve word detection by
starting the identifier with the back-quote character, “‘”. Thus, if an imported mod-
ule has (say) a class with a field named “IF”, then the field may be referenced as
“‘IF” in the source of your program. You may not define identifiers using this escape
mechanism, except in foreign definition modules. You may however refer to imported
identifiers using this mechanism.

It may be important to know that the back-quote is stripped at the time that the
program is scanned. The presence of the escape simply suppresses the usual check
for reserved identifiers that normally follows identifier scanning. Thus the back-quote
is not used during any name matching of identifiers. A curious result of this strategy
is that if a program escapes an identifier that does not need it, the escaped and non-
escaped identifiers will refer to the same name.

4 Semantic Issues

4.1 DLLs and EXEs
The compiler can produce either stand-alone executables (.exe files) or dynamic link
libraries (.dll files). Executable files must have an entry point known to the runtime.
The entry point method optionally takes an array of native-strings as parameters. Any
such command line arguments are accessed through the library ProgArgs.

If the source file contains the import of the special module name CPmain, then
an executable file is produced as output. In this case the module body is named
“.CPmain”, and begins with a hidden call which saves any command line arguments
so that they may be later accessed by calls to the ProgArgs library.

If, instead, the source file contains the import of the special module name WinMain,
then again an executable file is produced as output. However, in this case the PE-
file produced is a Windows executable, and the module body is named “.WinMain”.
Windows executables do not start a command window when launched.

If the source file does not import either CPmain or WinMain then the module body
becomes the “class constructor” which is executed at the time that the dynamic link
library is loaded on demand.

If the compiler is invoked with the /nocode option, then only the assembler (CIL)
file is created. In this case the assembler ilasm may be invoked so as to create either

4 SEMANTIC ISSUES 15

a .dll or an .exe file using the command “ilasm /DLL” or “ilasm /EXE”. Of course,
it is an error to try to create an executable file if the source does not contain an entry
point.

4.2 The STA Special Module
Windows programs usually need to run in a thread with the Single Thread Apartment
property set to true. It was previously rather unwieldy to meet this condition by access-
ing the facilities of the base class library. In V1.3.12 a new “dummy” module STA may
be imported to set the property.

When a base module imports STA the entry point of the executable is a code wrap-
per. The wrapper saves the program arguments, if any, creates a new thread with the
STA property set to true. The no-arg procedure that forms the payload of the thread is
the code specified by the base module body. The wrapper then starts the thread.

Many Windows programs require the STA property, but do not otherwise make
any mention of the the threading system. In such cases programs may import the STA
module, and leave gpcp to arrange an implicit import of System.Threading.

It is an error to import STA if the target is the JVM. If STA is imported into a module
which does not import either CPmain or WinMain then STA has not effect and a gpcp
issues a warning.

4.3 Unimplemented constructs
There are a small number of constructs that are unimplemented or restricted in this
release of the compiler. These are —

* Module finalizers (unimplemented)

* Procedure variables (restricted)

* Uplevel access to reference parameters (inexact semantics)

All of these features were implemented in a prototype version of the compiler.
Module finalizers are intended to be run prior to unloading the module code. There

is no facility for doing this on either of the gpcp target platforms.
Procedure variables are restricted in the current release. Arbitrary procedures of

matching type may be assigned to procedure variables, and called in the usual way.
However assignment of procedure variables is only permitted if the two sides of the
assignment have the same type. That is, assignment of procedure values other than
literal procedures requires name compatibility, rather than the structural compatibility
specified in the language Report.

Non-local variable access is permitted in an unrestricted way since release 1.1.6.
However, in the case of reference (VAR) parameters of unboxed5 type that are accessed
from within nested procedures the semantics of parameter passing are modified because
the actual parameters are passed by copying rather than by reference. The compiler
gives an explicit warning in these unusual circumstances.

5 Component Pascal types that are unboxed in the .NET implementation are scalar values and record
types that are not extensible, do not extend another type, and are not defined as the anonymous bound type
of a pointer type.

4 SEMANTIC ISSUES 16

4.4 Additional Arithmetic Operators
The usual arithmetic operators DIV and MOD in Pascal-family languages have well
defined semantics that are different to the division and remainder operators of imple-
mentations of C-family languages. In Component Pascal the operators DIV and MOD
are defined as follows —

i DIV j = bi/jc

(i DIV j)× j + (i MOD j) = i

where i, j are integers, i/j denotes real division, and b . c is the floor function.
Notice that DIV always rounds toward negative infinity unlike most C-language

implementations (which normally round toward zero). The Pascal operators are math-
ematically preferred, but in case the alternative semantics are required for compatibility
reasons, gpcp introduces alternatives. DIV0 denotes integer division with rounding to-
ward zero, while REM0 denotes the corresponding remainder operation.

i DIV0 j = RTZ(i/j)

(i DIV0 j)× j + (i MOD0 j) = i

where i, j are integers, i/j denotes real division, and RTZ(.) is the Round-to-Zero func-
tion.

Warning
Remember, if you use any of these non-standard operators your
program source will not be portable to other implementations of
Component Pascal.

4.5 Semantics of the WITH statement
The semantics of the WITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. In the code —

WITH x : TypeTi DO
... (* guarded region *)

| x : TypeTj DO
... (* guarded region *)

END;

the variable x is asserted to have the specified type throughout the so-called guarded
region. The base language guarantees that the type of the selected variable cannot
be “widened” in the guarded region, but might possibly be narrowed. In gpcp if the
guarded variable is a pointer type, the pointer value is treated as a constant. If the
guarded variable is a record type, then assignment to the fields is allowed, but an at-
tempt to change the variable type by an entire assignment is a semantic error.

4 SEMANTIC ISSUES 17

4.6 Extensible arrays: the vector types
From version 1.3 there is direct support for extensible array types. Values of these
vector types are dynamically allocated, and automatically extend their capacity when
an append operation is performed on an array that is already full. Vectors may be
declared to have any element type, and extend their length using amortized doubling.

In most circumstances when a linked list would otherwise have been used the vector
types are faster, more memory efficient, and allow memory-safe indexing. Elements
of vectors may be accessed using the familiar index syntax, with index values checked
against the active length of the array, rather than the array capacity.

Declaring vector types

Vectors are declared using the new syntax —

Type ::- ... - - other type constructors
| “VECTOR” “OF” Type.

Variables of vector type are not automatically allocated. They must be explicitly allo-
cated using a variant of the built-in NEW procedure which specifies the initial capacity.
Here is an example –

TYPE IntVec = VECTOR OF INTEGER;
VAR iVec : IntVec;
...

NEW(iVec, 16); (* Allocate vector with initial capacity 16 *)

Built-in procedures

There are two new procedures defined on the vector types. The first of these appends
a new value of the declared element type to an existing vector. The signature of the
procedure is —

PROCEDURE APPEND(v : VectorOfEType, e : EType);

As noted above, vectors are reference types, so that the first argument may be passed
by value. The vector will double its length if there is no further space left in the array.

There is another built-in procedure which allows for the active length of the vector
to be reduced. This has the effect of truncating the array at the given length. The
signature is —

PROCEDURE CUT(v : VectorOfEType, i : INTEGER);

It is a runtime error if the requested new length of the vector is less than zero, or is
greater than the current active length.

A new version of the standard built-in function LEN returns the active length of the
vector. There is no way of querying the current capacity of a vector datum.

As noted above, a new version of the standard built-in procedure NEW allocates
vectors of the specified initial capacity.

Assignment semantics

Vector values are references, so that an assignment of a vector value creates an alias
to the original r-value. If you really do have to make a value copy, here is a coding
pattern —

4 SEMANTIC ISSUES 18

VAR a,b : SomeVecType;
...

NEW(b, LEN(a)); (* b is barely big enough *)
FOR i := 0 TO LEN(a)-1 DO APPEND(b, a[i]) END;

Note that in this case the value copy b will extend at the very next append operation,
since its initial capacity is the same as the active length of a.

4.7 Extended import list syntax
The automatically constructed canonical names for foreign modules are a little un-
wieldy. This is unavoidable given that names in .NET have a qualifying assembly file
name which is not necessarily a valid Component Pascal identifier, and a namespace
name which may be a multipart dotted name. In Component Pascal module names are
simple identifiers. This awkwardness is lessened by an extended import list syntax.

Names in import lists may declare aliases for module names, using assignment syn-
tax. In standard Component Pascal the right hand side of the assignment is the module
identifier. The extended syntax allows a literal string on the right, with the format—

‘"’ ‘[’ assembly-file-name ‘]’ namespace-name ‘"’
In this case the assembly file name is the file name without the .dll or .exe exten-
sion. The namespace name may be a dotted name. For example, the module corre-
sponding to the System.Net namespace is found in the file “system.dll”. It may be
imported into a Component Pascal program with the line—

IMPORT SysNet := "[system]System.Net";
gpcp parses the string, and reconstructs the canonical name that PeToCps will have
assigned to the corresponding symbol file. Within the Component Pascal source, the
foreign module may be referred to by the alias “SysNet” rather than the non-obvious
“System Net”6

4.8 Implementing foreign interfaces
Component Pascal types may extend classes from the .NET CLS. Types which extend
CLS classes may also declare that they implement interfaces7 from the CLS. The syntax
extension to access this feature has BNF —

RecordDecl ::- “RECORD” [BaseType] [Fields] “END” “;” .
BaseType ::- “[” QualifiedIdent { “+” QualifiedIdent } “]” .

The first qualified identifier, as in the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored. In
the case that interfaces are implemented, the base type may be left blank, or may be
explicitly set to ANYREC.

The semantics of type-assertions are also relaxed whenever a reference is asserted
to be of some interface type. For non-interface types many erroneous type-checks can
be detected at compile time. However, there are almost no cases where an assertion that
a dynamically typed object belongs to some interface type can be rejected at compile
time.

Thus, interface types may be used in Component Pascal. However, it is not possible
to define interface types using gpcp.

6Yes, the canonical name really does have a repeated lowline to mark the implicit duplication of the
prefix.

7By “interface” in this context, we mean fully abstract class.

4 SEMANTIC ISSUES 19

4.9 EVENT types
Event types are declared in gpcp with the same syntax as procedure types, but with the
keyword PROCEDURE replaced by EVENT. Events are implemented as multicast del-
egate types in the .NET framework. If variables are declared to be of some event type,
then it is possible to use the new built-in procedures REGISTER and DEREGISTER to
register or deregister callbacks on the multicast delegate.

The usage for registering a callback is —
REGISTER(target-variable, callback-method);

The target variable is the designator of the object, which must be of some event type.
The denotation of the callback method has two forms. If a static procedure is to be
registered, then the simple procedure name is used. If the callback is intended to in-
voke a particular type-bound method on some particular object, then the syntax “ob-
ject.method” is used. This works for any type-bound procedure in Component Pascal.
The usage for deregistering a callback is syntactically identical, but using the non-
standard built-in procedure DEREGISTER rather than REGISTER. A callback may be
registered multiple times. The delegated calls are made in order of registration.

4.10 Unsigned Byte Type
The 8-bit type used in the .NET Common Language Specification (CLS) is an unsigned
type. If Component Pascal is to be a full consumer of CLS libraries then it must be
possible to declare variables and fields of such types in Component Pascal programs.
In order to facilitate this a new built-in type UBYTE has been introduced in version 1.2
of gpcp. Values of this type may be assigned to variables of larger integral types as
required. However, if values of this type are assigned to locations of the signed 8-bit
type BYTE a runtime range-check is required. Similarly if values of any signed type
are assigned to a location of unsigned byte type an explicit narrowing cast is required,
using the new built-in function USHORT().

4.11 Runtime type descriptors
A new function since version 1.2 returns runtime type descriptors. This allows easy
access to the facilities of the system reflection libraries. The function is overloaded,
and has the following signatures —

PROCEDURE TYPEOF(typename): RTS.NativeType;
PROCEDURE TYPEOF(IN s : anytype) : RTS.NativeType;

If the target is .NET , then NativeType is an alias for System.Type on the underlying
runtime. If the target is the JVM, then the return value will be java.lang.Class.

The procedure with the first signature takes any type name as actual parameter.
The procedure with the second signature takes an actual parameter that is any variable
designator. If the type of the designator is statically known (perhaps because it denotes
an object of an inextensible type) then the compiler resolves the reference and no call
is needed to the runtime function System.Object::GetType().

4.12 Additional built-in functions
There are six additional built-in functions added to the implementation.

4 SEMANTIC ISSUES 20

4.12.1 Functions MKSTR and BOX

One allows convenient access to the underlying native string object type. The signature
is —

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

Note that it is never necessary to use MKSTR when passing a literal string to a formal
parameter of native string type. In the literal case the compiler does the conversion for
the programmer automatically.

Another handy function takes a record or array type, and makes a value copy onto
the heap, returning a pointer to the copy. There is a special case version also, for CLS
value classes. The signatures are —

PROCEDURE BOX(s : CP-type) : POINTER TO CP-type;
PROCEDURE BOX(s : CLS-ValCls) : System.Object;

Here, CP-type is a Component Pascal-defined record, array or string type. The func-
tion copies the value so that modification of the boxed value does not affect the original
value. The function is particularly convenient for programs that manipulate character
data implemented as dynamically allocated arrays. Thus “BOX("hello")” returns a
pointer to an array of characters of length 6, while “BOX(ptr1ˆ + ptr2ˆ)” per-
forms a string concatenation and allocates a destination array of the required length. If
the function is applied to an array of fixed length the return value is an open array of the
same length. In the case of character arrays the use of the array “stringifier” mark “$”
on the argument of BOX boxes a copy of the array which is truncated at the position of
the “nul” character. Here is an example program fragment —

VAR str : ARRAY 16 OF CHAR;
ptr : POINTER TO ARRAY OF CHAR;

...
str := "Hello";
ptr := BOX(str); (* ptr points to an array of length 16 *)
ptr := BOX(str$);(* ptr points to an array of length 6 *)

Without the BOX function, the construction of a value copy of an open array would
require the following tedious construction —

VAR a,b : POINTER TO ARRAY OF CHAR;
...

NEW(b, LEN(a));
FOR i := 0 TO LEN(a) DO b[i] := a[i] END;

Using the BOX function, the same effect is achieved by “b := BOX(aˆ);”.
The special case of BOX applies to arguments that belong to CLS value classes as

used in the .NET base class libraries. In this case, for compatability with the libraries,
the function returns a “boxed” copy of the value class datum. Such boxed values are
treated by the system as having type System.Object. Boxed values may be unboxed by
using the standard type-check syntax. Here is an example —

VAR datTim : Sys.DateTime; (* A CLS value type *)
objRef : Sys.Object; (* Native object type *)

...
objRef := BOX(Sys.DateTime.get_Now()); (* Boxing *)

...
datTim := objRef(Sys.DateTime); (* UnBoxing *)

Note that in the final statement of the fragment the type-check unboxes the object to
create a reference, and the assignment performs a value copy as would be expected for
a value type.

4 SEMANTIC ISSUES 21

4.12.2 Function USHORT

As of version 1.2 a new built-in unsigned byte type has been introduced, for confor-
mance with the .NET CLS. In order to coerce values of signed type to the new type a
new function USHORT(), analogous to the standard SHORT() function is also intro-
duced. This function has the signature —

PROCEDURE USHORT(s : AnyNumericType) : UBYTE;

It is a runtime error if the value of the parameter is not within the unsigned byte range.

4.12.3 Function TYPEOF

The fourth new built-in function, TYPEOF, allows programs to access the reflection fa-
cilities of the underlying platform. The function was described in the previous section.

4.12.4 Functions LSH and ROT

The logical-shift function LSH has the following signatures —
PROCEDURE LSH(arg : LONGINT; n : INTEGER) : LONGINT;
PROCEDURE LSH(arg : INTEGER; n : INTEGER) : INTEGER;

The return value is the shifted version of the first argument, and has the same type.
The second argument specifies the number of places that the first argument is to

be shifted. Positive values give a left shift. The shift value is range-checked, so that
for INTEGER (LONGINT) shifts of greater than 31 (63, respectively) will return a
correctly sized zero value.

The generic bitwise-rotate function ROT has the following signature —
PROCEDURE ROT(arg : <anyint>; n : INTEGER) : <anyint>;

The return value is the rotated version of the first argument, and has the same type. The
arg input may be of any integer type, including LONGINT or any of the shorter integer
types.

The second argument specifies the number of places that the first argument is to
be rotated. Positive values give a left shift. The rotation is within the bitwidth of the
argument type. Thus if a contains the value 64 then ROT(a,2) will return 1 if a is of
BYTE type, but returns 256 if a is of any of the larger integer types.

4.12.5 Changes for ASH

Prior to version 1.3.16 the builtin arithmetic shift function ASH only worked correctly
for the 32-bit integer type. From the current version onward two significant changes
have been made.

First, the function now has the following available signatures —
PROCEDURE ASH(arg : LONGINT; n : INTEGER) : LONGINT;
PROCEDURE ASH(arg : INTEGER; n : INTEGER) : INTEGER;

The return value is the shifted version of the first argument, and has the same type.
The second change is the behavior when shifts of greater than the data-word width

are attempted. Previously, shift amounts were applied modulo-wordwidth, which is the
usual semantic for machine instruction sets. The shift value is now range-checked, so
that for INTEGER (LONGINT) shifts of magnitude greater than 31 (63, respectively)
will return a correctly sized zero (if arg is positive OR the shift is leftward) or negative-
one (if arg is negative AND the shift is rightward).

4 SEMANTIC ISSUES 22

4.13 Deprecated features and warnings
The use of procedure variables and of super-calls are deprecated. Both attract compile-
time warning messages. Warnings are also issued in the case of procedures that are not
exported, and are not called (or assigned as procedure variables) within their defining
module. This situation is usually an error arising from failure to mark the procedure
for export.

4.14 Program executable verification
Component Pascal is a type-safe language. Every correct program is type-safe in the
same sense that is guaranteed by the .NET virtual object system’s verifier. In principle
therefore, all output of gpcp should be verifiable.

You may test-verify the output of compilation by running the stand-alone program
executable verifier “peverify” over the file. Figure 8 shows the result of running the
verifier over an example module.

D:\gpcp-CLR\work>peverify Browse.exe
Microsoft (R) .NET Framework PE Verifier Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001.

All Classes and Methods in Browse.exe Verified
D:\gpcp-CLR\work>_

Figure 8: Running peverify over an example PE-file

Output might fail to verify if a manually constructed interface to a library does not
correspond to the internal metadata of the imported assembly. This potential problem
has largely gone away with the use of PeToCps.

4.15 Unchecked arithmetic
By default, all arithmetic is overflow-checked, and all narrowing assignments are range
checked. Sometimes it is necessary to turn off this behaviour. There are two means to
do this. One of these is a custom attribute that is applied on a per-procedure basis.
Checks may also be turned off from the command line for all compilations in that
invocation.

The syntax of the custom attribute is a context sensitive marker that appears imme-
diately after the keyword BEGIN in a procedure or module body. The syntax is —

Body ::- “BEGIN” [“[UNCHECKED ARITHMETIC]”]
StatementSequence “END” identifier .

An example of the use of this construct, from the source of the compiler itself, is the
identifier hash function shown in Figure 9. This function performs a rotate-and-add
computation, in which bits are carried out of the sign bit back into the least significant
bit of the variable “tot”. Overflow checking must be turned off, in order to prevent
very long identifiers from crashing the compiler.

5 EXCEPTION HANDLING 23

PROCEDURE hashStr(IN str : ARRAY OF CHAR) : INTEGER;
VAR tot : INTEGER;

idx : INTEGER;
len : INTEGER;

BEGIN [UNCHECKED_ARITHMETIC] (* Turn off overflow checks *)
len := LEN(str$);
tot := 0;
FOR idx := 0 TO len-1 DO
INC(tot, tot);
IF tot < 0 THEN INC(tot) END;
INC(tot, ORD(str[idx]));

END;
RETURN tot MOD size;

END hashStr;

Figure 9: Code of the hash function

Important note on parameter passing semantics for the JVM
The JVM version of gpcp takes liberties with the precise semantics of parameter
passing almost everywhere. Actual parameters of unboxeda value type that are
passed to reference formals are passed by copying. In the case of formal param-
eters of VAR mode, actual values of unboxed value type are copied in and copied
out. In the case of formal parameters of OUT mode the value is only copied out.
The current implementation method is necessary in order to obtain reasonable per-
formance on the JVM. The change will not affect the results of your program unless
you access the actual of a reference formal along two paths (either by having two
reference formals sharing the same actual argument value, or accessing a static vari-
able directly and through a parameter). You should not write programs that do this!
You might also care to know that with this change, the performance of code is good
if you have only one such copied parameter, but becomes poor if you have more
than one in any frequently called procedure.

In contrast, on the .NET platform unboxed reference parameters are only passed
inexactly if they are non-locally accessed from within a nested procedure, as de-
scribed on page 15.

aUnboxed value types on the JVM platform are the built-in standard types such as CHAR and INTE-
GER, together with the pointer types. Structures and arrays are always boxed at runtime in the JVM, and
are not affected by this semantic inexactness.

5 Exception Handling
Component Pascal does not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
built-in procedure introduced to facilitate this.

6 FACILITIES OF THE CP RUNTIME SYSTEM 24

5.1 The RESCUE clause
Procedures, but not modules may include exactly one RESCUE clause, at the end of
the procedure body. This has syntax —

ProcBody ::- “BEGIN” Statements
[“RESCUE” “(” ident “)” Statements]
“END” ident.

The identifier introduced in the parentheses is of type RTS.NativeException, and
must have a name that is distinct from every other identifier in the local scope.

If any exception is thrown in the body of the procedure, or if any exception is
unhandled in a procedure called from this procedure, then the rescue clause is entered
with the exception object in the named local variable. This variable is read-only within
the rescue clause, and is not known in the rest of the procedure body.

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly return
a type-correct value, or explicitly throw another exception.

5.2 The THROW statement
Code may throw an exception by using the built-in procedure THROW. This procedure
has two signatures —

PROCEDURE THROW(x : RTS.NativeException);
PROCEDURE THROW(x : RTS.NativeString);

These may be used anywhere in the program. The first is useful for rethrowing an
exception from within a rescue clause. The second of these may be passed a literal
string, without requiring a call of MKSTR() since the the compiler will automatically
coerce literal strings to formals of native string type. This call will create and throw
an exception object of the underlying native exception type, System.Exception, with
the given string as embedded information. If you want to create an exception object

Warning
Remember, if you use any of these non-standard facilties for ex-
ception handling your program source will not be portable to
other implementations of Component Pascal.

to abort program execution with a meaningful string, you may also use the library
function

RTS.Throw(msg : ARRAY OF CHAR);

Exceptions thrown by this library function can be caught by a RESCUE clause.

6 Facilities of the CP Runtime System

6.1 Supplied libraries
This release has a small number of libraries supplied. These are —

6 FACILITIES OF THE CP RUNTIME SYSTEM 25

* Console writes strings and numbers to the console

* StdIn reads characters and whole lines from the console

* Error this library writes strings and number to the error stream

* ProgArgs provides access to the command line arguments, if any

* GPText a basic library for handling text formatting

* GPFiles defines the supertype of GPBinfFiles.FILE and GPTextFiles.FILE

* GPBinFiles reading and writing binary files

* GPTextFiles reading and writing text files

* RealStr formatting real numbers: based on the ISO-Modula-2 library

* RTS access to the facilities of the runtime system

* StringLib string library, based on the ISO-Modula-2 library

For the most part these libraries are the ones that were required to bootstrap the
compiler.

6.2 The runtime system (RTS)
The runtime system provides a variety of low-level access facilities. The source file for
this module, “RTS.cp”, is not really the source. This file is a dummy foreign module,
as is denoted by the context-sensitive mark SYSTEM appearing before the keyword
MODULE. All such “modules” are actually implemented in the C# file named RTS.cs,
and at runtime are found in the assembly RTS.dll. In the /jvm/ version the source of
RTS.cp is spread over several *.java files.

The “source” of RTS is shown in Figure 10. This figure 8 is only a fragment of
the complete API for the runtime system library. The complete definition, RTS.cp, is
found in ${CROOT}/sources/libs/cpascal.

The four character defaultTarget string will hold “net” when running on the .NET
platform, and “jvm” when running under the Java Runtime Environment.

The word SYSTEM in the first line of the definition is a context sensitive mark,
rather than a reserved word. This means that the word may be used as an identifier
elsewhere in the program. SYSTEM and FOREIGN have slightly different semantics
on the .NET platform, but are synonyms on the JVM version.

The function procedures TypeName, CharAtIndex and Length are new in version
1.3.12.

6.3 The ProgArgs library
The ProgArgs library provides access to the command line argument, if any. From
gpcp release 1.3 it also provides access to the process environment. This is a system
library, with the following public interface —

8 The figure is a fragment of the version 1.4.08 source of RTS.cp. See Section 7.1.1 for a discussion
of the change.

6 FACILITIES OF THE CP RUNTIME SYSTEM 26

SYSTEM MODULE RTS;
TYPE CharOpen* = POINTER TO ARRAY OF CHAR;

CharVector* = VECTOR OF CHAR;

TYPE
NativeString* = POINTER TO RECORD END;
NativeObject* =
POINTER TO EXTENSIBLE RECORD
STATIC (* This syntax new for v1.4.08 *)
PROCEDURE init*() : NativeObject, CONSTRUCTOR;

END;
NativeType* =
POINTER TO ABSTRACT RECORD
STATIC
PROCEDURE init*() : NativeType, CONSTRUCTOR;

END;
NativeException* =
POINTER TO EXTENSIBLE RECORD
STATIC
PROCEDURE init*() : NativeException, CONSTRUCTOR;

END;

VAR
defaultTarget- : ARRAY 4 OF CHAR;
eol- : CharOpen; (* OS-dependent EOL string *)
fltNegInfinity- : SHORTREAL;
dblNegInfinity- : REAL;
fltPosInfinity- : SHORTREAL;
dblPosInfinity- : REAL;

PROCEDURE TypeName(x : NativeType) : CharOpen;
(* Get type name in target conventions *)

PROCEDURE CharAtIndex(s : NativeString; i : INTEGER) : CHAR;
(* Get char at index postion i in string s *)

PROCEDURE Length(s : NativeString) : INTEGER;
(* Get length of string s *)

PROCEDURE getStr(x : NativeException) : CharOpen;
(* Get error message from Exception x *)

PROCEDURE StrToReal*(IN s : ARRAY OF CHAR;
OUT r : REAL;
OUT ok : BOOLEAN);

(* Parse array into an IEEE double REAL *)

RTS continues ...

Figure 10: Source of the RTS pseudo-module

6 FACILITIES OF THE CP RUNTIME SYSTEM 27

RTS continuation ...
PROCEDURE StrToInt*(IN s : ARRAY OF CHAR;

OUT i : INTEGER;
OUT ok : BOOLEAN);

(* Parse an array into a CP INTEGER *)

PROCEDURE StrToLong*(IN s : ARRAY OF CHAR;
OUT i : LONGINT;
OUT ok : BOOLEAN);

(* Parse an array into a CP LONGINT *)

PROCEDURE RealToStr*(r : REAL;
OUT s : ARRAY OF CHAR);

(* Decode a CP REAL into an array *)

PROCEDURE IntToStr*(i : INTEGER;
OUT s : ARRAY OF CHAR);

(* Decode a CP INTEGER into an array *)

PROCEDURE LongToStr*(i : LONGINT;
OUT s : ARRAY OF CHAR);

(* Decode a CP INTEGER into an array *)

PROCEDURE realToLongBits*(r : REAL) : LONGINT;
(* Convert IEEE double to a longint with same bit pattern *)

PROCEDURE longBitsToReal*(l : LONGINT) : REAL;
(* Convert longint to an IEEE double with same bit pattern *)

PROCEDURE hiInt*(l : LONGINT) : INTEGER;
(* Get hi-significant word of long integer *)

PROCEDURE loInt*(l : LONGINT) : INTEGER;
(* Get lo-significant word of long integer *)

PROCEDURE Throw*(IN s : ARRAY OF CHAR);(* Abort execution *)

PROCEDURE GetMillis*() : LONGINT;(* Get time in milliseconds *)

PROCEDURE ClassMarker*(o : ANYPTR);(* Write class name *)

PROCEDURE GetDateString*(OUT str : ARRAY OF CHAR);
(* Get a date string in some native format *)

END RTS.

Figure 11: Source of the RTS pseudo-module, continued

SYSTEM MODULE ProgArgs;
PROCEDURE ArgNumber*() : INTEGER;
PROCEDURE GetArg*(num : INTEGER; OUT arg : ARRAY OF CHAR);
PROCEDURE ExpandWildcards*(argsToSkip : INTEGER);
PROCEDURE GetEnvVar*(IN str : ARRAY OF CHAR;

OUT val : ARRAY OF CHAR);
END ProgArgs.

6 FACILITIES OF THE CP RUNTIME SYSTEM 28

The procedure ExpandWildcards is new in gpcp v1.4. It is a response to an issue which
arises when a Component Pascal program wants use exactly the same source code on
both .NET and JVM platforms. The JVM implementation natively expands wildcards
from command-line arguments, while the .NET implementation does not. Previously,
if gpcp was invoked with a command —

> gpcp *.cp

the JVM version would dutifully compile all the cp files in the current directory, while
the .NET version would respond —

#gpcp: cannot open local file <*.cp>

A call to ExpandWildcards(N) will expand any such wildcards, starting with the Nth,
making the behavior the same on both platforms. The argument argsToSkip allows for
those rare cases when the first few arguments should not be expanded. In any case,
arguments starting with “-” or “/” will never be expanded.

ExpandWildcards rewrites the argument-list internally stored in the runtime system,
changing both its length and its contents. After wildcard expansion the calls ArgNum-
ber and GetArg will refer on the rewritten list.

Note carefully that on the .NET platform GetEnvVar fetches an environment vari-
able, or returns an empty string. On the JVM platform the procedure first seeks a
Property String, and if that fails seeks an environment variable. Property strings are
passed to the underlying Java process at startup, using options of the form —

-Dname=value

6.4 The RealStr library
The RealStr library is a port to Component Pascal of the ISO-Modula-2 real number
formatting library. The interface to the library is shown in Figure 12.

The library contains procedures to transform real number values into fixed format
strings, floating format strings and the so-called “engineering” format in which expo-
nents are always a multiple of three. For the string parser, StrToReal, the recognized
format is given by the regular expression —

Number ::- [“+” | “-”] dig {dig} [“.” {dig}] [“E” [“+” | “-”] dig {dig}] .

where dig denotes a decimal digit.
The RealStr library will exactly round trip numbers via RealToFloat and StrToReal,

provided a full 17 significant figures are specified for RealToFloat. So far as possible
the results of using module RealStr should be identical on the two platforms.

6.5 The StringLib library
The StringLib library reproduces the functionality of the ISO Modula-2 string library,
although the implementation has little similarity. The publicly accessible interface to
the library is shown in Figure 13.

The library contains the expected procedures for assigning, extracting, replacing,
deleting, concatenating and searching strings. As well, each of the procedures that
mutates a string value has a corresponding predicate function that tests if the operation
can be carried out exactly. This allows a guarded style of coding.

None of these routines raises program exceptions, but have sensible behaviour in
the case that the incoming arguments do not allow correct completion. For example,

6 FACILITIES OF THE CP RUNTIME SYSTEM 29

MODULE RealStr;

(* Ignores any leading spaces in str. If the subsequent characters in str are in the *)
(* format of a signed real number, assigns a corresponding value to real. Argument *)
(* res reports whether conversion was successful. *)
PROCEDURE StrToReal*(str : ARRAY OF CHAR;

OUT real : REAL;
OUT res : BOOLEAN);

(* Converts the value of real to floating-point string form, with sigFigs significant *)
(* digits and copies the possibly truncated result to str. *)
PROCEDURE RealToFloat*(real : REAL;

sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to floating-point string form, with sigFigs significant *)
(* digits, and copies the possibly truncated result to str. The number is scaled with one *)
(* to three whole-number digits and an exponent that is a multiple of three. *)
PROCEDURE RealToEng*(real : REAL;

sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to fixed-point string form, rounded to the given place *)
(* relative to the decimal point, and copies the result to str. *)
PROCEDURE RealToFixed*(real : REAL;

place : INTEGER;(* num. of frac. places *)
OUT str : ARRAY OF CHAR);

(* Converts the value of real as RealToFixed if the sign and magnitude can be shown *)
(* within the capacity of str, or otherwise as RealToFloat, and copies the possibly *)
(* truncated result to str. The format is implementation-defined. *)
PROCEDURE RealToStr*(real: REAL; OUT str: ARRAY OF CHAR);

END RealStr.

Figure 12: Interface of the RealStr library

in the case of the Assign procedure, if the source string is too long for the supplied
destination the result is truncated to fit. Similarly, for the Extract procedure the length
of the extracted string is the least of: (i) the requested character count, (ii) the number
of characters left in the source string, and (iii) the capacity of the destination array.

6.6 The SYSTEM facilities (.NET only)
The SYSTEM module consists of three procedures. It must be explicitly imported, and
programs that import it will only compile if the command line argument “/unsafe”
is in effect and the target is .NET . Programs which use any of these facilities will
be unverifiable. Furthermore, the careless use of these facilities may compromise the
correctness of the garbage collector. The module is useful for diagnostic testing, but
should never be used in deployed code.

The procedures are —

6 FACILITIES OF THE CP RUNTIME SYSTEM 30

MODULE StringLib;(* from GPM module StdStrings.mod *)

PROCEDURE CanAssignAll*(sLen : INTEGER;
IN dest : ARRAY OF CHAR) : BOOLEAN;

(* Check if an assignment is possible without truncation. *)

PROCEDURE Assign* (IN src : ARRAY OF CHAR;
OUT dst : ARRAY OF CHAR);

(* Assign as much as possible of src to dst, with terminating nul *)

PROCEDURE CanExtractAll*(len : INTEGER;
sIx : INTEGER;
num : INTEGER;

OUT dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if extraction of ”num” chars starting at index sIx is possible. *)

PROCEDURE Extract* (IN src : ARRAY OF CHAR;
sIx : INTEGER;
num : INTEGER;

OUT dst : ARRAY OF CHAR);
(* Extract num characters starting from sIx. Result is truncated if there *)
(* are fewer characters left, or the destination is too short. *)

PROCEDURE CanDeleteAll*(len,sIx,num : INTEGER) : BOOLEAN;
(* Check if num chars may be deleted starting from sIx. len is the source length *)

PROCEDURE Delete*(VAR str : ARRAY OF CHAR;
sIx : INTEGER;
num : INTEGER);

(* Delete num chars starting from sIx. Less are deleted if there are less num after sIx. *)

PROCEDURE CanInsertAll*(sLen : INTEGER;
sIdx : INTEGER;

VAR dest : ARRAY OF CHAR) : BOOLEAN;
(* Check if sLen chars may be inserted into dest starting from sIdx. *)

PROCEDURE Insert* (IN src : ARRAY OF CHAR;
sIx : INTEGER;

VAR dst : ARRAY OF CHAR);
(* Insert src string into dst starting from sIx. Less chars are inserted if there is *)
(* insufficient space in dst. dst is unchanged if sIx is beyond the end of dst. *)

PROCEDURE CanReplaceAll*(len : INTEGER;
sIx : INTEGER;

VAR dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if len chars may be replaced in dst starting from sIx. *)

StringLib continues ...

Figure 13: Interface to the StringLib library

6 FACILITIES OF THE CP RUNTIME SYSTEM 31

StringLib continuation ...
PROCEDURE Replace* (IN src : ARRAY OF CHAR;

sIx : INTEGER;
VAR dst : ARRAY OF CHAR);

(* Insert the characters of src into dst starting from sIx. Less chars are replaced if the *)
(* initial length of dst is insufficient. The string length of dst is unchanged. *)

PROCEDURE CanAppendAll*(len : INTEGER;
VAR dst : ARRAY OF CHAR) : BOOLEAN;

(* Check if len characters may be appended to dst *)

PROCEDURE Append*(src : ARRAY OF CHAR;
VAR dst : ARRAY OF CHAR);

(* Append the chars of src string onto dst. Less characters are appended if the *)
(* length of the destination string is insufficient. *)

PROCEDURE Capitalize*(VAR str : ARRAY OF CHAR);

PROCEDURE FindNext* (IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;

bIx : INTEGER;(* Begin index *)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);

(* Find the first occurrence of the pattern pat in str starting the search from bIx *)
(* If no match is found fnd is false and pos is bIx. Empty patterns match everywhere. *)

PROCEDURE FindPrev*(IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;

bIx : INTEGER;(* Begin index *)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);

(* Find the previous occurrence of the pattern pat in str starting the search from bIx. *)
(* If no match is found fnd is false and pos is bIx. Empty patterns match everywhere. *)

PROCEDURE FindDiff* (IN str1 : ARRAY OF CHAR;
IN str2 : ARRAY OF CHAR;
OUT diff : BOOLEAN;
OUT dPos : INTEGER);

(* Find the index of the first char of difference between the two input strings. *)
(* If the strings are identical diff is false, and dPos is zero. *)

END StringLib.

Figure 14: Interface to the StringLib library

PROCEDURE ADR(IN obj : any type) : INTEGER;
PROCEDURE GET(IN adr : INTEGER; OUT dst : any basic type);
PROCEDURE PUT(IN adr : INTEGER; IN val : any basic type);

There is a demonstration program named \examples\hello\testadr.cp This
example demonstrates some of the capabilities of the library. Study the results, you may
find them surprising. Note, for example, that ADR(arr) is not equal to ADR(arr[0]).

7 FOREIGN LANGUAGE INTERFACE 32

6.7 The StdIn library
In version 1.3 a new library is supplied that provides primitives for reading single
characters and whole lines from the standard input stream. This stream is connected
by default to the machine console, but may be redirected using the facilities of the
underlying platform libraries.

This library has very simple functionality, described by the foreign module shown
in Figure 15. In the first release the predicate function More always returns the TRUE

SYSTEM MODULE StdIn;
(* Read a line of text, discarding new-line *)
PROCEDURE ReadLn*(OUT arr : ARRAY OF CHAR);
PROCEDURE SkipLn*();(* Discard remainer of line *)
PROCEDURE Read*(OUT ch : CHAR);(* Fetch next character *)
PROCEDURE More*() : BOOLEAN;(* Return TRUE in gpcp v1.3! *)

END StdIn.

Figure 15: Source of the StdIn pseudo-module

value. The team will restore the functionality when we figure out a way of making the
behaviour the same on the two execution platforms.

7 Foreign Language Interface

7.1 Accessing the underlying native types
As seen in Figure 10 the RTS module defines four type aliases. The binding of these
types to the native platform types is determined dynamically, at compile time. Thus, the
underlying types are accessible without any other import other than RTS. At compiler-
runtime the compiler queries the target flag, or takes the default target value if there is
no target command option.

If the target is “net” then NativeObject, NativeString and NativeException will be
the CLR types System.Object, System.String and System.Exception respectively.

If the target is “jvm” then NativeObject, NativeString and NativeException will be
the Java types java.lang.Object, java.lang.String and java.lang.Exception respectively.

In any case, literal strings may be implicitly coerced to either the native string type,
or to the native object type. This saves a lot of clutter in code that interfaces to foreign
libraries. However, if the value of a character array variable needs to be transformed
to a native string, the non-standard built-in function —
PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

must be used. See the appendix for an extended example of using these facilities for
working with native string types.

7.1.1 Calling NEW() on Native Types

An ambiguity arises in the definition of the RTS.Native* types. All record types in
Component Pascal have a no-arg constructor, which is invoked by the proper procedure
“NEW(...)”. However, for foreign types NEW is only valid if the foreign class has a

7 FOREIGN LANGUAGE INTERFACE 33

public no-arg constructor. For symbol files created by PeToCps the symbol file will
record what constructors are defined in the type. For dummy definition modules such
as “RTS” the situation was ambiguous.

In version 1.4.08 this ambiguity is fixed by demanding that dummy definition mod-
ules must indicate if a no-arg constructor is accessible in the foreign type. In figure 10
it will be seen that (for example) “NativeException” has a no-arg constructor, but
“NativeString” does not. The syntax to allow this is new in version 1.4.08.

Note that, in figure 10 only the no-arg constructor is mentioned in RTS.cp. This
is so that gpcp knows that it is allowed to call NEW(excVar) when excVar is a vari-
able declared as NativeException type. This much, at least, is common for the .NET
and JVM versions. For a program that is .NET-specific the mscorlib module could be
imported, and a further three constructors, shown in figure 16, will be available.

Figure 16: The System.Exception API hiding behind RTS.NativeException

7.2 Compiling dummy definition modules
As a convenience during bootstrapping, the compiler has been enhanced so as to allow
the construction of metainformation files for foreign language libraries. Such modules
must be compiled with the “/special” option.

Foreign language interfaces are denoted by the context sensitive marks FOREIGN
or SYSTEM preceding the keyword MODULE at the start of the file. Such “dummy”
modules do not contain the code of the foreign language facilities, but simply define
the interface to those facilities. Such modules must be compiled with the “/special”
option. The system marker has special meaning in the .NET platform, but has the same
semantics as foreign in the JVM platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

* Modules can be given an explicit external name

* Procedures can be given an explicit external name

* Features with “protected” scope may be defined

* Static features of classes may be defined

* Escaped identifiers may be defined

* Interface types may be defined

* Overloaded names may be given aliases

7 FOREIGN LANGUAGE INTERFACE 34

* Constructors may be given an alias

A module declaration of the form —
MODULE Foo["[blah]namespace"];

declares that this module will be found in .NET assembly “blah” within namespace
“namespace”. It is not necessary to use this mechanism if you write the foreign mod-
ule so that it has the default name as described in Section 3.4.

A procedure declaration of the form —
PROCEDURE (x : T)BarII*["Bar"](i,j : INTEGER);

declares that this type-bound procedure has the external name “Bar” and the internal
(CP) name “BarII”. This mechanism allows overloaded names in the CLS to be given
non-overloaded aliases in CP.

The mark “!” is used to declare that a foreign name has protected scope. The mark
is placed in the same position in a declaration as the standard export markers “*” and
“-”.

If a name clashes with a Component Pascal keyword, it should be defined using the
back-quote escape, as described on page 14.

Here is an example of the syntax that is required to define a foreign interface type.
TYPE Foo* = POINTER TO INTERFACE RECORD (* always empty *) END;

The keyword INTERFACE is reserved. Such types cannot declare any instance fields
in the record, nor can they define type-bound procedures which are not declared AB-
STRACT.

Finally, constructors must be declared with the special name “.ctor”. Declaring a
constructor is not necessary if only the no-arg constructor is required, since NEW(obj)
works in this case as for all other types in Component Pascal (see Section 8.4 for more
detail). If access to constructors with arguments is required, then these may be given
a Component Pascal alias, and are marked as constructors by using the magic explicit
name. For the “/target=jvm” version, the magic name is “<init>”.

7.3 Accessing Static Features of Foreign Classes
If a class has been imported from a foreign definition, and the class has static members,
these may be accessed by means of a semantic extension to the designator grammar.

Normally, the syntactic construct —
QualifiedIdent {Selector}

is in error if the qualified identifier resolves to a type-identifier. However there are two
exceptional cases where this is legal in gpcp. If a designator begins —

TypeIdentifier “.” Identifier ...

and the following is true —
The type identifier resolves to an imported, foreign type, and either

the identifier is a static field or constant of the type, or
the identifier is a static method of the named type

then this is a legal reference to the named static feature of the type.
In order to define such constructs in the syntax of dummy definitions the follow-

ing productions are added to the record syntax. Note that these extensions are only
recognised if the module is compiled with the “/special” command-line option.

7 FOREIGN LANGUAGE INTERFACE 35

Record ::- “RECORD” [“(” TypeId “)”] {FieldList}
[“STATIC” {StaticFeature}] “END”.

StaticFeature ::- ProcHeading“;” | Constructor“;” | StaticConst“;” | StaticField“;” .
StaticConst ::- identifier “=” ConstExpression .
StaticField ::- identifier “:” TypeId .
Constructor ::- “PROCEDURE” IdentDef FormalPars “,” “CONSTRUCTOR”.

All undefined syntactic categories in the fragment have the same meaning as in the
unmodified Component Pascal syntax. In particular, procedure headings have the same
syntax as elsewhere in the language.

7.4 Accessing Nested Classes
The CLS allows for class declarations to be nested within other classes. In Component
Pascal such classes have names of the form

EnclosingClassName$NestedClassName

This compound name is a single identifier, as far as gpcp is concerned, and must not
have any embedded spaces. The Browse tool uses the same convention. As an example,
in the foreign module “System Windows Forms ” there is a class that browse displays
as —
Control$ControlCollection* =

POINTER TO EXTENSIBLE RECORD (mscorlib System.Object)
STATIC
PROCEDURE init*(p0 : Control) :

Control$ControlCollection,CONSTRUCTOR;
END;

In this example the nested class ControlCollection is enclosed by the class Control.
Figure 17 is an example program that accesses the nested class, and creates an instance
of the class. Note that the outer, enclosing object is constructed first, using the no-arg

MODULE Nested;
IMPORT SWF := System_Windows_Forms_;
VAR ct : SWF.Control;

cc : SWF.Control$ControlCollection;
BEGIN
NEW(ct);(* Create outer object and pass to inner constructor *)
cc := SWF.Control$ControlCollection.init(ct);

...
END Nested.

Figure 17: Using a nested class

constructor, and then is passed as an argument to the explicit constructor for the nested
class object.

8 CREATING AND USING FOREIGN DEFINITION MODULES 36

8 Creating and Using Foreign Definition Modules
This Section is only of relevance if you plan to write your own foreign definition mod-
ules. For most users the information in the previous section on the usage of these
facilities will be sufficient.

Hint:
This section is included for mainly historical reasons. The need
to write foreign definition modules has significantly decreased
with the availablity of the PeToCps and J2CPS tools. It is usu-
ally easier to write the foreign language code, use the tool to pro-
duce the symbol file, and Browse to produce a human-readable
version.
An exception occurs when the same module is required for both
platforms. In that case it may still be simpler to write a foreign
module, and then separately implement the code in Java and C#
to match the shared definition.

8.1 Syntax of Foreign Definitions
The syntax of foreign definition is shown in Figure 18. The syntax for the declaration
of record types has been extended. Unless otherwise defined here, the meanings of
other syntactic-category symbols is the same as in the Component Pascal Report.

GPModule ::- Module | ForeignMod .
ForeignMod ::- (“FOREIGN” | “SYSTEM”) “MODULE” ident [string] “;”

ImportList DeclSeq “END” ident “.” .
DeclSeq ::- ConstDecls TypeDecls VarDecls

{ ProcHeading “;” MethodHeading “;” } .
TypeDecls ::- [TypeDecl {“;” TypeDecl }] .
TypeDecl ::- IdentDef “=” Type .
Type ::- ForeignRecord

| ... // Other types as for GPModule.
ForeignRecord ::- [“POINTER” “TO”] Attributes “RECORD” [SuperTypes]

FieldList {“;” FieldList } // Instance fields
[“STATIC” StaticDecl {“;” StaticDecl}] “END” .

StaticDecl ::- StaticField | StaticConst | StaticProc | Constructor .
StaticField ::- IdentDef “:” typeId .
StaticConst ::- IdentDef “=” constExpr .
StaticProc ::- “PROCEDURE” IdentDef [FormalPars] .
Constructor ::- “PROCEDURE” IdentDef FormalPars “,” “CONSTRUCTOR”.
Attributes ::- “ABSTRACT” | “EXTENSIBLE” | “INTERFACE” .
SuperTypes ::- “(” [Qualident] {“+”Qualident}“)” .

Figure 18: Syntax of foreign modules

The syntax begins with the context sensitive mark FOREIGN or SYSTEM. On the
.NET platform the system marker indicates that the code will be found in the runtime

8 CREATING AND USING FOREIGN DEFINITION MODULES 37

system assembly. In the JVM, where each class file contains a single class, the marker
has the same semantic effect as the foreign marker.

8.2 Explicit package or namespace names
The way in which runtime names are generated from module names was described in
Section 3.4. In the case of the JVM we have the following correspondence —

Component Pascal Name JVM Name
MODULE ModNm; CP.ModNm // package name

TYPE Cls = RECORD...END; CP.ModNm.ModNm Cls
VAR varNm : Cls; CP.ModNm.ModNm.varNm
PROCEDURE ProcNm(); CP.ModNm.ModNm.ProcNm()
PROCEDURE (t:Cls)MthNm(); CP.ModNm.Cls.MthNm()

END ModNm.

Notice that in the JVM there are no features that are defined outside of classes, so
that the static features varNm and ProcNm are considered at runtime to belong to an
implicit static class with the same name as the module name. However, so far as an
importing Component Pascal program is concerned, these features will be accessed by
the familiar ModuleName.memberName syntax.

Component Pascal Name .NET CLS Name
MODULE ModNm; [ModNm]ModNm // namespace name
TYPE Cls = RECORD...END; [ModNm]ModNm.Cls

VAR varNm : Cls; [ModNm]ModNm.ModNm::varNm

PROCEDURE ProcNm(); [ModNm]ModNm.ModNm::ProcNm()

PROCEDURE (t:Cls)MthNm(); [ModNm]ModNm.Cls::MthNm()

END ModNm.

In the virtual object system of .NET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in either Java or in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versions of gpcp, and
implement a foreign module on each underlying platform. If on the other hand you are
planning to match a foreign definition to an existing library written in Java or C#, then
you must override this default naming scheme.

The syntax —
“FOREIGN” “MODULE” ident “[” string “]” “;”

allows an arbitrary package or namespace name to be defined. For example, in order to
access the facilities of the package java.lang.Reflect a foreign module might
begin

FOREIGN MODULE java_lang_Reflect["java.lang.Reflect"];

Similarly, in order to access the facilities of the namespace System.Reflect in the as-
sembly mscorlib a foreign module might begin

FOREIGN MODULE mscorlib_System_Reflect
["[mscorlib]System.Reflect"];

Note that the form of the literal string is different on the two platforms, and thus
any such foreign modules will be specific to a particular platform. Notice also that
there is no mechanism to explicitly give a name to an implicit static class.

8 CREATING AND USING FOREIGN DEFINITION MODULES 38

8.3 Dealing with overloaded names
Each of the underlying platforms allows name overloading for methods. This feature is
deliberately not permitted in Component Pascal. Nevertheless, it is necessary to gain
access to library methods that have overloaded names. The option of using explicit
external method names facilitates this. Suppose we have two methods, both of which
are named Add(), one with a single integer parameter, and the other with two. We
might define these as follows in a foreign definition.
PROCEDURE (this : Cls)AddI*["Add"](I : INTEGER),NEW;
PROCEDURE (this : Cls)AddII*["Add"](I,J : INTEGER),NEW;

Within the importing Component Pascal program the two names are distinct, but the
program executable will correctly refer to the underlying overloaded methods. This
manually specified name-mangling is rather awkward, particularly in the case of pa-
rameters of object types.

Since gpcp release 1.1 users are able to access the unmangled names of overloaded
foreign methods directly. The PeToCps and J2CPS tools create symbol files that have
overloaded names, and the compiler will match calls to the intended method. Because
this is a language extension, the compiler is strict about matching calls to methods
in the presence of automatic type coercions. If more than one method matches when
taking into account all legal, implicit coercions then gpcp will proceed as follows —

* gpcp will check if one of the methods has formal parameter types that exactly
match the arguments without using type coercion.

* if this fails, gpcp will check if one of the methods matches using only the conver-
sion of the Component Pascal string type (array of char) to the native string type,
and the Component Pascal ANYREC and ANYPTR to the native object type.

* if this fails, an error is notified listing the ambiguous candidate methods.

These rules allow most ambiguities to by resolved by the programmer using an explicit
conversion of the actual parameters to the exact type of the formal parameters of the
desired method.

8.4 Interfacing to constructors
If a foreign class has a “no-arg” constructor, then this will be implicitly called when-
ever an object is created by the use of the standard procedure NEW. However if it is
necessary to access constructors with arguments, then it is possible to define an alias
for the constructor in a foreign module. In every case the constructor will be accessed
by means of a static, value returning function that returns an object of the constructed
class. The fact that this is a constructor must be made known to gpcp since the way
in which these methods are called differs from other methods. On each underlying
platform there is a “magic” name that is used for calling a constructor. On the JVM the
name is “<init>”, while on .NET the name is “.ctor”. These two strings are used as
the explicit string that defines such a procedure in the foreign definition. An example
of an interface to a constructor with arguments, in the syntax used by the Browse tool,
might be —
PROCEDURE Init*(width,height : INTEGER) : Rect,CONSTRUCTOR;

8 CREATING AND USING FOREIGN DEFINITION MODULES 39

The identifier “CONSTRUCTOR” is not a reserved word, but a context sensitive mark that
may be used as an ordinary identifier elsewhere in the program.

Note that this declaration would normally appear in the static part of the record
defining the class Rect. Calls to this procedure in a Component Pascal program, such
as —

rec1 := F.Rect.Init(25,17);

would, depending on the target platform, translate into a call to one or the other of —
namespaceName.Rect::.ctor(int32,int32)
packageName.Rect.<init>(II)

Of course, if you extend a foreign class that does not have a public no-arg construc-
tor, then you will not be able to construct values of your own type using NEW, since
this implicitly calls the no-arg constructor of its super-type. In this case, it is necessary
to define a new constructor signature for your extended type. From gpcp release 1.2
there are two ways to do this. If the desired constructor has the same signature as the
constructor of the supertype, then the first method may be used. In the case of the
example above, the required syntax is shown in the following fragment —

TYPE MyRect* = POINTER TO RECORD (Mod.Rect) ... END;
...

PROCEDURE Init*(w,h : INTEGER) : MyRect,CONSTRUCTOR;

The constructor does not define a code body, and simply passes its arguments to the
super-type constructor with matching signature.

The new syntax in gpcp version 1.2 is considerably more flexible. The Component
Pascal constructor is not required to have the same signature as the constructor of the
super-type. An example of the syntax defining another constructor for the extended
type defined above is —

PROCEDURE MkMyRect*(Formals) : MyRect,BASE(actuals);
(* Local-declarations *)

BEGIN
(* Constructor body code *)
RETURN SELF;

END MkMyRect;

in the code the formal and actual parameter lists have been left un-elaborated.
The identifier “BASE” is a not a reserved word, but is a context sensitive mark. Of

all publicly available constructors for the super-type it specifies a call of the one with
signature matching the types of the “actuals” argument list. This super-type constructor
will be called as the first action of the constructor, before the new fields of the derived
object are initialized. Within the body of the constructor the object under construction
is denoted by the identifier “SELF”. The constructor must return this object along every
terminating path of the body. It is an error if the actual parameter expression types in
the BASE super-call do not choose a unique super-type constructor.

8.5 Declaring static features of classes
Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on the JVM platform the pointer form be always
used, as a helpful reminder to the user that at runtime the objects will be dynamically
allocated. On the .NET platform value classes should be declared as plain records,
with no explicit base type. On both platforms array types should be declared as point-
ers to arrays, again reminding the user that all arrays are dynamically (and explicitly)
allocated.

8 CREATING AND USING FOREIGN DEFINITION MODULES 40

In order to access static features of foreign classes, the syntax extension of records
given in Figure 18 must be used. In the optional static section of a record declaration
we may define constants, static fields and static (i.e. non type-bound) procedures.

We may consider the following example —

CP Foreign Definition Component Pascal Usage
FOREIGN MODULE ModNm;

TYPE Cls = ModNm.Cls (* class name *)
POINTER TO RECORD

STATIC

statVar* : CHAR; ModNm.Cls.statVar

PROCEDURE StatProc(); ModNm.Cls.StatProc()

END;

END ModNm.

In this example we select the static member by qualifying the designator by the type-
name of the class.

Type-bound methods will be defined lexically outside of the record declaration in
the normal Component Pascal way, remembering that only the heading is required.
On the .NET platform the distinction between virtual and instance methods is made
automatically. Instance methods are NEW but not EXTENSIBLE. On the JVM platform
the possibility of optimizing the calls to such methods is left to the JIT to determine.

Note that the foreign modules which arise from C# on the .NET platform or are
written in Java can never have static features outside of classes. If you are writing
the foreign module yourself you may use the default class naming scheme described
in Section 3.4. However if you are matching an existing package, you will need to
use the explicit name override described earlier in this Section. This allows you to
control the package name, but does not allow you to name an implicit static class for
static features. Therefore you will need to use the mechanisms of this sub-section if
the package contains any static features.

8.6 Automatic module renaming
Programs written in C# that contain a single class definition only are often created in
files that take their name from the name of the class. If you try to match this same
structure in Component Pascal, you run into a small difficulty on the .NET platform.
Suppose you want to export a class Rename from a module named Rename. In this
case the external class name in .NET will be “[Rename]Rename.Rename”, and this
name will clash with the name of the “synthetic static class”. In this circumstance gpcp
will automatically rename the static class, by pre-pending two underscore characters.
If the module with the renamed class is imported, gpcp will find the renamed symbol
file. In both contexts gpcp will issue a warning that the renaming is taking place —
C:\gpcp\work> gpcp Rename.cp UseRename.cp

1 MODULE Rename;

**** -------ˆ Warning: Default static class has name clash

**** Renaming static class to <__Rename>
#gpcp: <Rename> No errors, and one warning

2 IMPORT Rename, CPmain;

**** ---------ˆ Warning: Looking for a auto-renamed module

**** ---------ˆ Looking for module "Rename" in <__Rename.cps>
#gpcp: <UseRename> No errors, and one warning

9 INSTALLING AND TRYING THE COMPILER 41

9 Installing and Trying the Compiler

9.1 Installation
The compiler is packaged in a single zip file “gpcp-distroXXX.zip”. Complete
instructions for installing and trying out the compiler are in the separate document
“Getting Started with GPCP”.

Figure 19 is the complete folder hierarchy of the installed compiler. The four first-

Figure 19: Distribution File Tree

level subdirectories of the distribution are

* bin — the binary files of the compiler

* documentation — the documentation, including this file

* sources — the source files

* symfiles — contains the library symbol files

The bin directory needs to be on your PATH, and the environment variable CPSYM
must point to the “symfiles” directory. Typical commands to set these variables on
Windows systems are —

set CPSYM=.;%CROOT%\symfiles;%CROOT%\symfiles\NetSystem
set PATH=%PATH%;%CROOT%\bin

Where CROOT is an environment variable pointing to the root of the expanded distri-
bution, typically —
C:\Users\user\gpcp-NET

10 REBUILDING FROM SOURCES 42

10 Rebuilding from Sources
This section describes a number of alternative ways of rebuilding gpcp from the sources.
Since almost all the code of gpcp is implemented in Component Pascal you must have
a working gpcp executable.

10.1 Rebuilding Using the MkNetDistro Script
The script for rebuilding all the gpcp tools from source is MkNetDistro.bat. The
script is located in the sources\gpcp directory. The script relies on %CROOT% being
defined, %CROOT%\bin being on the executable path and the script being executed from
the sources\gpcp directory.

The script compiles the source code in the various subdirectories of the sources

directory using the current binaries in CROOT\bin. The documentation, program
examples and the .NET symbol files are copied from the existing distribution rooted at
CROOT.

10.2 Manual Recompilation
Compiling the Libraries

The library sources are found in CROOT\sources\libs. There are three subdirec-
tories containing the Component Pascal, C# and Java files.

To compile the CP sources, execute —
gpcp /special ASCII.cp Console.cp CPmain.cp\

Error.cp GPBinFiles.cp GPFiles.cp\
GPTextFiles.cp ProgArgs.cp RTS.cp\
StdIn.cp WinMain.cp STA.cp

(where the command line has been folded to fit on the page!).
This command compiles the dummy definition files of those libraries that have

separate C# and Java implementations. There are two additional libraries which have
native Component Pascal implementations —

gpcp RealStr.cp StringLib.cp

In this case, as well as producing symbol files, there are two PE-files created. If you
wish to re-create the html browser files simply execute —

Browse /html /sort /dst:HtmlBrowseFiles *.cps

To compile the C# files, execute —
csc /t:library /debug RTS.cs
csc /t:library /debug GPFiles.cs
csc /t:library /debug /r:GPFiles.dll GPBinFiles.cs
csc /t:library /debug /r:GPFiles.dll GPTextFiles.cs

Compiling the Compiler Tools

There are two versions of the JavaTarget module, namely JavaTargetForCLR and Ja-
vaTargetForJVM. If you try to compile the wrong version CPMake will try to import
the ASM5 libraries that are not part of this distribution and fail. So, to be sure, before
going any further execute —

copy JavaTargetForCLR.cp JavaTarget.cp

10 REBUILDING FROM SOURCES 43

From the sources\gpcp directory first create a target directory for the PE-files,
say dest. Then execute —

CPMake /all /bindir=dest gpcp
gpcp /bindir=dest ModuleHandler.cp SymbolFile.cp\

CPMake.cp
gpcp /bindir=dest Browse.cp

The first of these compiles, in dependence order, all of the modules of gpcp. The
second compiles all the extra modules that CPMake requires, while the last compiles
the entry point module of Browse.

To compile PeToCps execute —
CPMake /all /bindir=dest PeToCps

To compile the new browse-file indexer, change directory to MakeIndex and exe-
cute —

CPMake /all /bindir=..\dest MakeIndex

Both the .NET-hosted and JVM-hosted versions of gpcp can produce .NET PE-
files. This is achieved by writing a textual intermediate language file, then forking
and executing Microsoft’s IL-assembler ilasm. The fork-and-execute is performed by
module MsilAsm. The file “MsilAsm.cp” in the gpcp directory is a dummy definition
module with two implementations, each specialized for one of the host virtual machine
environments —

sources\gpcp\libs\csharp\MsilAsm.cs
sources\gpcp\libs\java\MsilAsm.java

We must compile the first of these for gpcp-NET (the other is used by the gpcp-JVM).
So, change directory to sources\gpcp\libs\csharp and execute —

csc /t:library /debug MsilAsm.cs

copy the resulting dll and pdb files to your dest directory.

10.3 Cross-Compiling using gpcp-JVM
In order to use the JVM version of gpcp to compile a .NET-hosted version of the com-
piler, it is necessary to first do the following —

1. Copy JavaTargetForCLR.cp to JavaTarget.cp.

2. Make sure that the .NET symbol files are on the CPSYM path. That is, you must
use the .NET version of CPSYM so that the compiler can find symbol files like
mscorlib System.cps.

Now, if we suppose that the gpcp-JVM tool-launching scripts are in some directory
gpcp-bin then, in the sources/gpcp directory —

1. Run the gpcp-JVM tools as follows —
gpcp-bin\cpmake -target:jvm -all CPMake

gpcp-bin\cpmake -target:jvm -all gpcp

gpcp-bin\gpcp -target:jvm Browse.cp

11 GPCP COMMUNITY 44

2. Change directory to sources/gpcp/libs/csharp and rebuild module MsilAsm
from the C# source —
csc /t:library /debug MsilAsm.cs

3. Change directory to sources/libs/csharp and rebuild the gpcp runtime sys-
tem libraries —
csc /t:library /debug RTS.cs

csc /t:library /debug GPFiles.cs

csc /t:library /debug /r:GPFiles.dll GPBinFiles.cs

csc /t:library /debug /r:GPFiles.dll GPTextFiles.cs

Finally, you will need to run the MakeAllCLR.bat script in the
sources/libs/cpascal directory. This compiles the foreign language interfaces to
the runtime system, and the two libraries StringLib, RealStr. The html files are
for human consumption, so you may move them anywhere you please. The symbol
files *.cps need to be copied into a directory on the CPSYM path, and the PE-files
copied to your target CROOT\bin directory.

11 GPCP Community
The definitive version of gpcp is maintained on github, at https://github.com/
k-john-gough/gpcp/.

Posting to the Mail Group
There is a discussion group for users of gpcp. You may subscribe by sending an email
to GPCP-subscribe@yahoogroups.com. The development team monitor traffic on the
group, and will post update messages to the group.

https://github.com/k-john-gough/gpcp/
https://github.com/k-john-gough/gpcp/
mailto:GPCP-subscribe@yahoogroups.com

12 CHANGE SUMMARY – V1.4.08 45

12 Change summary – v1.4.08
Changes from 1.4.07

Changes in version 1.0.08 relate to two bug-fix areas for the .NET version. The changes
introduce a syntax change for dummy definition modules, requiring such modules to
indicate whether or not each Pointer to Record type in the underlying foreign module
has a no-args constructor.

Because the new version of RTS.cp uses this new syntax the library sources can
only be compiled with the new v1.4.08 binaries.

* An error in the processing of dummy definition modules, such as RTS.cp re-
sulted in all foreign reference types being defaulted as having the has no no-arg
constructor attribute. The opposite default would have also been an error, lead-
ing to method not found errors at runtime.

In the new version the default is unchanged, but a syntax extension allows the
default to be overwritten with an explicit constructor declaration. (See Section
7.1.1 in the v1.4.08 release notes.)

* The System.Windows.Forms symbol files distributed with v1.4.07 referenced a
non-existent module. PeToCps had pruned the module, since it had no non-
generic features, but did not consistently remove references to that module.

PeToCps has been fixed to remove this error.

Changes from 1.4.06

Changes in these version 1.4.07 releases apply to both targets. They provide better
facilities for accessing functionality from the Java and .NET standard libraries. The
previous limitations were discovered during the development of the forthcoming PE-
file emitter based on the System.Reflection.Emit module.

There is a significant change to the Browse tool, with additional information on
the limitations of the interfaces to foreign libraries. See the Module Interface Browser
section of the release notes.

There is one change which may be a breaking change for some users.

* Prior to version 1.4.07 different implementations of GPBinFiles.readByte be-
haved inconsistently. If an attempt was made to read past the end of file the JVM
version threw an exception, while the .NET version returned −1. To have pro-
grams portable between implementations this difference has to be removed even
though this will be a breaking change for some users. From version 1.4.07 both
versions will return −1 if an attempt is made to read past the end of file.

* Http output from the Browse tool now includes comments which, for foreign
language symbol-files, spell out any limitation on the semantics of each defined
type. These comments have pop-up explanations when clicked with a pointing
device.

* A bug in the implementation of the /jasmin option which caused an assert trap
on modules with WITH statements has been removed.

* Previous versions of gpcp were incorrectly rejecting value-assignments of .NET
structs. In fact such assignments are permitted by the .NET runtime, and are
now available for v1.4.08.

12 CHANGE SUMMARY – V1.4.08 46

* A new option /rflemit has been introduced. This will be activated when the
Reflection-Emit filewriter is finished.

Changes from 1.4.05

Changes in these version 1.4.06 releases apply mainly to the .NET target, but there are
also some bug fixes to the JVM version.

The major change is the removal of the dependency on PERWAPI which will now
be removed from the distribution. PeToCps now depends on System.Reflection to create
symbol files from PE-files. The program should now be robust against changes in
executable file format.

* A new version of PeToCps is included. This has made a change to the options for
this program. Most significantly the processing of mscorlib requires use of a
new option. It is also only able to create a symbol file for the currently executing
version of mscorlib. Behaviour for other libraries is unchanged.

* The new version of PeToCps filters the list of features declared on abstract types,
such as System.Char, and their companion primitive types, such as char. The
symbol file includes all the static fields and static methods but excludes the in-
stance features. Instance features on primitive types are, in any case, inaccessible
to Component Pascal.

* The Browse program now sorts the import list when the /html option is in force.
For record types with long implements-lists the link to typebound procedures is
reformatted to avoid being pushed off-screen.

* There was an error in the encoding of the record-type-specific value copy func-
tion, __copy__, if the record contained a fixed-length array field that was not
the final field of the record. This error had been there since version 0.5. Now
fixed.

* In the JVM version, for SE 7+, if the end of a module body was not reachable in
the control flow graph the emission of a “return” byte-code caused a verifica-
tion error. Now fixed.

* In the JVM version, if a procedure body was empty, but enclosed one or more
nested procedures gpcp crashed while trying to compute the data flow in the
(inaccessible) nested procedure(s). This bug is common to both the -legacy and
-jasmin code emitters. gpcp now processes the parameter list of the enclosing
procedure, fixing the bug.

Changes from 1.4.04

All of the host-independent bug-fixes of version 1.4.04 have been applied to v1.4.05 of
gpcp-NET. The following additional changes are applied in gpcp-NET.

* There is a new utility MakeIndex that creates an index file “index.html” in a
symbol-browse directory.

* There is a new procedure in ProgArgs, ExpandWildcards. This is applied in
both gpcp and Browse. Previously only the JVM host allowed commands like
“gpcp *.cp”.

12 CHANGE SUMMARY – V1.4.08 47

* The compiler no longer offers the perwapi option. perwapi.dll is still in-
cluded in the distribution because PeToCps still requires it. The next version will
instead use system.reflection.emit.

* All the program examples have been put back into the distribution under the
documentation directory. A readme file distinguishes files that are .NET-only or
JVM-only, or are platform-agnostic.

The following gpcp-JVM-related bug fixes have been pushed to the source tree, but are
not in v1.4.04 gpcp-JVM.

* Fixing unimplemented method trap in CallGetClass of AsmUtil.cp

* Fix option parsing of “/hsize=” vs “-hsize:” that broke on MS command line.

* Fixed import-order dependent failure when importing RTS and java lang.

Changes from 1.3.16

The following major changes have been made to the v1.4.04 JVM version of gpcp.

* The packaging of the compiler has been modified so that the compiler, and the
other tools, may be invoked from the jar files included in the distribution. How-
ever, the default compiler output is unchanged, as a class-file hierarchy.

* The JVM version now uses the ASM v5 library to emit its class files. This enables
the compiler to emit files that are compatible with recent versions of the Java SE
platform.

* New command line flags allow the compiler to produce class files for various
JVM class-file standards. Output targeting SE 6+ uses the new, preferred ver-
ification framework. This slows down compilation slightly but results in faster
class loading.

* The previous direct class file writer is still included in the distribution, invoked
by using the -legacy option. This file-writer will be retired at some stage in
the future, but is included in v1.4, so that gpcp-JVM may still be cross-compiled
using gpcp-NET.

* A very substantial rewrite of the jave-to-symbolfile utility is now part of the
distribution. This new version no longer fails when dealing with recent library
jar-files. Furthermore this program deals directly with “jar” files as well as
class-file file-trees.

* A number of errors, have been fixed, removing a number of crashes inside the
compiler for invalid source files.

* Use of pointer-type local variables that are not definitely assigned previously
raised a warning – ”local variable may have its default NIL value”. This is now
a fatal error, as it leads to generation of Java bytecodes that fail verification.

* Browse has also had a significant rewrite. It now works corretly when given
multiple symbol files, including the common case of “browse *.cps”.

The corresponding changes to the .NET version will arrive later this year.

12 CHANGE SUMMARY – V1.4.08 48

Changes from 1.3.15

The following corrections and changes are included in the 1.3.16 release.

* Fixed a bug with builtin arithmetic shift function ASH when applied to 64-bit
operands.

* Added new builtin logical shift function LSH. This function applies to 32 and
64-bit integers. As for the standard ASH function, positive shifts are leftward.

* The semantics of both shift operations have been changed. Shift amount is now
range checked, and shifts of greater than or equal to data-word width return zero
or minus one as required.

* Added new builtin rotate function ROT. This generic function can rotate any
integer-typed value from 8 to 64-bits. As with the shift functions, positive shifts
are leftward.

* Fixed a bug with anonymous return types of procedures. Thus, public procedures
may return (pointers to) anonymous arrays of public types without error.

* Corrected an error with anonymous procedure types on the JVM version.

* The IL emitter of the .NET version now uses the invariant culture to write REAL
literal values. This fixes an issue for host machines with non-Anglocentric local-
ization settings.

Changes from 1.3.14

The following change is included in the 1.3.15 release.

* The prohibition on writing to the guarded variable within a WITH statement has
been varied to make it compatible with the behavior of BlackBox Component
Builder. If the guarded variable is of record type it is now allowed to write to
the fields. However any attempt to change the type of the guarded variable is a
semantic error.

* The behavior with pointer types is unchanged. The fields of the object may be
written to, but the pointer itself is read-only.

Changes from 1.3.13

The following corrections and changes are included in the 1.3.14 release.

* Procedure Types and variables are now supported for the JVM target, with the
same limitation as for the .NET target. Specifically, values of procedure type
are compatible if the types have the same name. The Report requires that values
with the same signature be compatible.

* A error in the generation of the value copy runtime support methods for the
JVM target has been corrected. The error was rather obscure, but caused some
permitted entire assignments to fail to copy some base-class fields under certain
specific circumstances.

12 CHANGE SUMMARY – V1.4.08 49

Changes from 1.3.12

The following corrections and changes are included in the 1.3.13 release.

* A significant rewrite of J2CPS has corrected a bug. The bug caused a module
import to be missed under certain very specific, rare circumstances.

* gpcp now populates the definition of RTS.NativeObject with the appropriate
methods from the underlying platform base type, java.lang.Object or or Sys-
tem.Object, depending on the target platform setting. This means that, for exam-
ple, a type derived from RTS.NativeObject may override these methods without
an explicit import of the whole of the system module.

Changes from 1.3.11

The following corrections and changes are included in the 1.3.12 release.

* Symbol file reading and writing have been modified so that string literals may
include arbitrary Unicode, and be of unbounded size.

* Literal handling throughout the compiler has been rewritten to allow for the pos-
sibility that strings might contain embedded NUL characters.

* Reading and writing of Unicode character sequences in symbol files now uses
modified UTF-8.

* A new pseudo-module import STA causes the compiler to emit a code wrapper
that runs the module body in a new thread with the STA property set to true.

* Some significant errors in the implementation of vectors of CHAR element type
have been corrected, as has some inconsistency in the implementation of entire
assignment for the vector types.

* Some programs that imported both RTS and mscorlib were were finding that
native string receivers were being denied access to the inherited methods of Sys-
tem.Object. This is now fixed.

* Programs using the TYPEOF extension function now work correctly when com-
piled with PERWAPI.

One consequence of these changes is that conversions between character arrays, string
literals and open arrays of characters have been made consistent with the language
standard. This might constitute a breaking change for programs that were relying on
an implicit “stringification” of an argument array. Within the code of the compiler
there was exactly one case where a call that passed an argument array “arr” had to be
changed to the correct, “arr$”, form.

Changes from 1.3.10

The following corrections and changes are included in the 1.3.11 release.

* A new diagnostic message is added for unresolved opaque types when using the
/perwapi option.

* When an opaque type is unresolved due to a missing import the PEFile Writer
attempts to correct the situation by generating a dummy import and a correspond-
ing type-ref descriptor.

12 CHANGE SUMMARY – V1.4.08 50

Changes from 1.3.9

The following corrections and changes are included in the 1.3.10 release.

* The resolution of calls to overloaded methods from foreign language libraries
now takes place in two steps. First an exact match of the argument types to the
method formals is attempted, followed, if necessary, by a match which uses no
type conversions other than between the Component Pascal character array types
and the platform string type, and between the Component Pascal ANYREC and
ANYPTR types and the platform object type.

* The dummy symbol files produced by PeToCps from PE-files now ignores non-
CLS compliant methods that Component Pascal cannot call.

* Some corrections to the encoding of the “vector types” extension avoid verifier
objections.

* Some corrections to code of the separate PERWAPI project avoid certain failures
of PeToCps.

* PeToCps does not create version information in symbol files for PE-files that are
versioned but not strongly named.

* gpcp now produces code for procedures with covariant return types that is veri-
fiable.

* The RealStr library now uses the invariant culture methods from the runtime
system for RealToStr and StrToReal. If you need the localized methods you may
directly access the methods in the runtime system library “RTS.dll”.

* The gpcp scanner also now uses the invariant culture methods for real literals
uniformly in all cases.

* The symbol file for the ProgArgs library now reveals the previously undocu-
mented method GetEnvVar which (only in the .NET version) returns environ-
ment variable strings.

The changes to overload resolution do not constitute a breaking change, since all pre-
viously working cases will still work. However, a useful set of extra cases are handled.
See also the comments in the new example program Params.cp in the NETexamples
directory.

Changes from 1.3.8

The following corrections are included in the 1.3.9 release.

* PeToCps extracts public key tokens from PE-files using new methods of PER-
WAPI. This avoids an issue with compact framework libraries.

* BOX once again works correctly on .NET framework structs.

* Constructors with arguments for Component Pascal types that extend foreign
classes now work as documented.

12 CHANGE SUMMARY – V1.4.08 51

Changes from 1.3.6

The following changes and corrections are included in the 1.3.8 release.

* PeToCps has been extended to correctly deal with foreign PE-files from the com-
pact framework.

* Limited records may be extended, but only in the defining module. New error
messages are attached to the new semantic checks.

* New switch /quiet makes gpcp run silently whenever possible.

* New switch /cpsym=XXX allows the symbol file lookup path to be varied from
the command line.

* CPMake may be started on a module which is not a “main” module. If a non-
main module is used as a starting point a warning is issued to ensure that the
choice was deliberate.

* Uninitialized local variables of pointer type now attract only a warning.

* Empty CASE and WITH statements no longer cause the compiler to trap, but
attract a warning in the absence of an ELSE branch.

* Browse now emits import statements in v1.3.6 extended syntax.

* The new import syntax is disallowed when /strict is in force.

Changes from 1.3.4

The following changes and corrections are included in the 1.3.6 release.

* The import declaration syntax is extended to allow foreign imports to be declared
using their .NET syntax rather than by using the canonicalized names generated
by PeToCps.

* Latin-8 characters are permitted in identifiers and strings.

* Much improved error reporting based on text-spans rather than (line, column)
pairs. This feature also upgrades the stepping behavior in the GuiDebug debug-
ger.

* New /perwapi option forces use of PERWAPI even when producing debug-
gable PE-files. This depends on the new version of PERWAPI, which can read
and write *.pdb files.

* A bug in the parsing of numeric tokens ending in H and L is fixed.

* New errors are reported for numbers too large for H format, and for numbers
even too large for L format.

* A bug in the BITS function on integers larger than max-int has been fixed.

12 CHANGE SUMMARY – V1.4.08 52

Changes from 1.3.3

The following changes and corrections are included in the 1.3.4 release.

* A more flexible canonicalization of assembly names has been introduced, to al-
low access to assemblies with filenames containing characters illegal in Compo-
nent Pascal identifiers

* Fixed some incorrect cases of coercion of character arrays to native strings

* Fixed some incorrect cases of usage for MIN, MAX and INC for short integral
types

* Fixed an error in some usages of arrays of procedure types

Changes from 1.3.0

The following changes and corrections are included in the 1.3.1 release.

* A new symbol file generator PeToCps replaces N2CPS. As a result, static meth-
ods, fields and constants are available for the system value types that map into
the built-in types of Component Pascal.

* Browse displays the names of formal parameters if these are available in the
symbol file. Browse has a new “/hex” option so as to output integer literals in
hexadecimal notation. Browse has a new “/sort” option so as to output types and
static features in sorted order.

* LEN now allows an argument that is an array typename, as well as the traditional
case of a variable designator.

* New Built-in constants INF, NEGINF have been implemented. These may be
used either as REAL or SHORTREAL values.

* The treatment of foreign modules that overload member names with fields as
well as methods are now correctly handled. This is permissible behaviour in
Java, but not C#.

* Calls of NEW on open arrays with multiple dimensions now correctly handle
arbitrary expressions in the length arguments.

* Extremely long method signature strings in the JVM emitter now no longer cause
a compiler panic.

Changes from 1.2.0

The following changes and corrections are included in the 1.2.x release.

* Support for boxing and unboxing of CLS value types is included.

* The vector types have been included.

* The parser now allows return types and formal parameters to be anonymous
constructed types. The compiler gives a warning when the type so defined will
be inaccessible and hence useless.

12 CHANGE SUMMARY – V1.4.08 53

* A string library StringLib has been included.

* Some corrections have been made to the RealStr library.

* The “WinMain” pseudo-module introduced to mark base modules for windows
executables that do not start a console when launched.

* Unsafe facilities in module “SYSTEM” introduced.

* Enhanced compatability between native strings, string literals and character lit-
erals.

* Correction to the semantics of subset inclusion tests, both versions.

Changes from 1.1.6

The following changes and corrections are included in the 1.2.0 release.

* The semantics of “super-calls” were incorrect in the case that the immediate
super-type did not define the method being overridden. In version 1.2 the nota-
tion “Fooˆ()” denotes the overridden method no matter how distant it is in the
inheritance hierarchy.

* New options have been implemented for output directories.

* The default behavior for the “/nodebug” option is to use the direct PE-file
writer. This is significantly faster than going through ilasm. Unfortunately,
this new file-writer does not produce debug symbols at this stage. There is sepa-
rate documentation for the PERWAPI component included with this release.

* The permitted semantics for constructors with arguments is significantly en-
hanced. This is of some importance when deriving from types that do not have
public no-arg constructors.

Changes from 1.1.4

The following changes and corrections are included in the 1.1.6 release.

* Uplevel addressing of reference parameters is now permitted in the .NET release,
although this has inexact semantics in some cases.

* A number of corrections to the JVM code-emitter have been added.

* The new built-in function BOX has been added.

* Trapping of types that attempt to indirectly include themselves is improved.

* An automatic renaming scheme is implemented for modules that attempt to ex-
port types with the same name as the module on the .NET platform.

12 CHANGE SUMMARY – V1.4.08 54

Changes from 1.1.3

The following changes and corrections are included in the 1.1.4 release.

* The copyright notice has been revised. gpcp is still open source, but now has a
“FreeBSD-like” licence agreement.

* A correction to the Java class-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’t care, but most browsers objected!

* It is now permitted to export type-bound procedures of non-exported types, pro-
vided the procedure overrides an exported method of a super-type.

* More line-markers are emitted to IL in .NET . This makes it possible to place a
breakpoint on the predicate of a conditional statement, and have the debugger
stop on the predicate rather than the next executable statement.

* The type-resolution code of “SymFileRW.cp” has been radically revised. It is
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.

13 APPENDIX: WORKING WITH NATIVE STRINGS 55

13 Appendix: Working with Native Strings
There are some subtleties in converting to native strings. The following example
demonstrates several strategies. The example tries to call the Equals() method of Sys-
tem.String to compare with a Component Pascal literal string.

MODULE StringCompare;
IMPORT Sys := "[mscorlib]System", RTS, CPmain;

VAR name : RTS.NativeString;
ltNm : RTS.NativeString;
sObj : RTS.NativeObject;

BEGIN
name := TYPEOF(Sys.String).get_Name();
(*
* This following does work, but with warnings, since literal strings have several
* automatic coercions that match different overloads of the Equals() method
*)
IF name.Equals("Blah") THEN END;
(*
* Bad syntax, this looks like a C# cast
*)
IF name.Equals((Sys.String)"Blah") THEN END;
(*
* The cast construct is a type-check, not a conversion
* So you cannot “cast” a literal value
*)
IF name.Equals("Blah"(Sys.String)) THEN END;
(*
* Built-in functions perform conversion. Here is a non-standard one that
* converts char-arrays to native strings. This works ...
*)
IF name.Equals(MKSTR("Blah")) THEN END;
(*
* In the case of assigments (or non-overloaded method calls), the compiler can
* work it out by itself without the MKSTR. Literal char arrays can be assigned to
* objects or strings. This works.
*)
ltNm := "Blah";(* gpcp automatically converts the string to System.String *)
IF name.Equals(ltNm) THEN END;
(*
* In the case of reference variables the type-assertion / cast syntax does work –
* the following two calls bind to different overloads.
*)
sObj := "Blah"; (* gpcp automatically converts the string to System.Object *)
IF name.Equals(sObj) THEN END;
IF name.Equals(sObj(Sys.String)) THEN END;

END StringCompare.

Curiously, these problems do not arise for the JVM version, since in the Java libraries
the “equal” predicate for the string type overrides the predicate from object. In the
JVM case there is no overloading.

14 APPENDIX: OVERRIDING THE DEFAULT NAMING 56

14 Appendix: Overriding the Default Naming
The default naming scheme for the .NET version of gpcp uses the module name as the
stem name for the output files, the CLR assembly name, the namespace name and the
dummy static class name. All of these defaults may be overridden as described here.
This may be necessary if another component expects a particular naming pattern.

Consider the following short program —

MODULE ModId; (* default naming will be used *)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “ModId.dll”, the name of the dummy
static class will be “[ModId]ModId.ModId”, and the name of the class that represents
the record type will be “[ModId]ModId.ClsId”.

It is allowed to follow the module name with a bracketed string that specifies either
or both of the assembly name and the namespace name. A typical string would be —

MODULE ModId ["[AsmNm]SpcNm"]; (* both *)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “AsmNm.dll”, the name of the dummy
static class will be “[AsmNm]SpcNm.ModId”, and the name of the class that represents
the record type will be “[AsmNm]SpcNm.ClsId”.

In the case that only the assembly name is specified, there is no namespace defined.

MODULE ModId ["[AsmNm]"]; (* assembly name only *)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “AsmNm.dll”, the name of the dummy
static class will be “[AsmNm]ModId”, and the name of the class that represents the
record type will be “[AsmNm]ClsId”.

Conversely, if the namespace name is specified, but no assembly name, then the
assembly name is taken from the module identifier, as in the default case.

MODULE ModId ["SpcNm"]; (* namespace only *)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “ModId.dll”, the name of the dummy
static class will be “[ModId]SpcNm.ModId”, and the name of the class that represents
the record type will be “[ModId]SpcNm.ClsId”.

There is just one special case remaining. In all of the previous cases the name of the
dummy static class is taken from the module identifier, with the symbol (metadata) file
using the same stem name. If the default name of the static dummy class clashes with
the name of an explicit class then the dummy static class will be renamed, as described
in Section 8.6.

14 APPENDIX: OVERRIDING THE DEFAULT NAMING 57

MODULE ClsId; (* module name clashes with class id *)
TYPE ClsId* = RECORD ... END;

END ClsId;

In this example the name of the output file will be still be “ClsId.dll” but name
of the dummy static class will be renamed to “[ClsId]ClsId. ClsId”, and the
name of the class that represents the record type will be “[ClsId]ClsId.ClsId”.
The symbol file will have the name “ ClsId.cps” and, as noted earlier, will be
automatically found by the compiler if the module name appears in an import list.

	Introduction
	Overall Structure
	Input and Output files
	Invoking the compiler
	Target choice
	Overflow checking
	Listing output
	Statistics output
	Setting the hash table size
	Choosing the Output and Symbol Directories
	What Libraries are in NetSystem?
	The Make Utility
	Module Interface Browser
	MakeIndex Utility
	Symbol File Generator PeToCps
	Canonicalization of Names in PeToCps
	Handling of Primitive Types by PeToCps

	Lexical Issues
	Latin-8 Character Set
	Unicode Literal Strings
	Non-standard Keywords
	Common Language Specification names
	Identifier syntax

	Semantic Issues
	DLLs and EXEs
	The STA Special Module
	Unimplemented constructs
	Additional Arithmetic Operators
	Semantics of the WITH statement
	Extensible arrays: the vector types
	Extended import list syntax
	Implementing foreign interfaces
	EVENT types
	Unsigned Byte Type
	Runtime type descriptors
	Additional built-in functions
	Functions MKSTR and BOX
	Function USHORT
	Function TYPEOF
	Functions LSH and ROT
	Changes for ASH

	Deprecated features and warnings
	Program executable verification
	Unchecked arithmetic

	Exception Handling
	The RESCUE clause
	The THROW statement

	Facilities of the CP Runtime System
	Supplied libraries
	The runtime system (RTS)
	The ProgArgs library
	The RealStr library
	The StringLib library
	The SYSTEM facilities (.NET only)
	The StdIn library

	Foreign Language Interface
	Accessing the underlying native types
	Calling NEW() on Native Types

	Compiling dummy definition modules
	Accessing Static Features of Foreign Classes
	Accessing Nested Classes

	Creating and Using Foreign Definition Modules
	Syntax of Foreign Definitions
	Explicit package or namespace names
	Dealing with overloaded names
	Interfacing to constructors
	Declaring static features of classes
	Automatic module renaming

	Installing and Trying the Compiler
	Installation

	Rebuilding from Sources
	Rebuilding Using the MkNetDistro Script
	Manual Recompilation
	Cross-Compiling using gpcp-JVM

	GPCP Community
	Change summary – v1.4.08
	Appendix: Working with Native Strings
	Appendix: Overriding the Default Naming

